This course is based in the practical development of a "hands-on" application of a Robotics and Highly Automated Systems real case study.

The applications must be proposed by lecturers and includes a different set of technologies all of them often used in industrial environments (PLCs, OPC, SCADA systems, Industrial Robots, Industrial Communications, Vision Systems, User Interfaces, etc.).

Depending on the lab work, applications will be developed by pairs or by groups (10 students),
and in both cases, teachers will assess and supervise each student’s teamwork in order to help them in the project development and to solve possible doubts.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Hours large group:</th>
<th>60h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>Hours medium group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group:</td>
<td>0h</td>
<td>0.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Module 1: ROBOTICS</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td></td>
<td>Self study: 15h</td>
</tr>
</tbody>
</table>

Description:
Introduction.
Robot Coordinate Systems: Robot coordinate system representation, transformation, homogeneous transform, relating the robot to its world.
Robot Programming: language based programming.
Applications: application of robots to a specific tasks.

Related activities:
To develop a Robot program in order to solve the given robotized task.
To develop a PLC program in order to solve the complete automation of a given production station.
To develop a SCADA application in order to supervise the complete industrial task.
Module 2: AUTOMATION

Learning time: 100h
Theory classes: 40h
Self study: 60h

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of industrial Automation Systems.</td>
</tr>
</tbody>
</table>

Flexible manufacturing Systems (FMS): Definition, Needs, General considerations and FMS types,
Composition of FMS:
? hierarchy of computer control
? Control software and Hardware components: PLCs
? System Communications
? Automated material movement (AGVs) and automated storage and retrieval systems (Highly automated warehouses)
? Automated Inspection Systems
? Safety components and Safety Automation |

CIM Database and Database Management Systems:
? DDBB Types,
? Management Information System,
? Manufacturing data collection systems
? Reporting KPIs

Supervision, Control and Data Acquisition (SCADA): SCADA Introduction, Elements of SCADA, Features of SCADA, SCADA communications, SCADA development for any one typical application.

Related activities:
Module 3: COMMUNICATIONS
Description:
LAN Connectivity; Bridges, Routers and Switches
Solving Distance and Capacity Problems With Full Duplex Ethernet Principles of The TCP/IP Architecture
Features of The Internet Computing Architecture Key Elements of The Internet Protocol
Related activities:
Working in groups, to decide the right data structure in order to automatize a small FMS composed by 4 different stations.
Working in groups, to realize the right control automation of each one of the fourth FMS line, including the artificial vision process, and a MMI (Man Machine Interface) as a user interface and interaction panel.
Learning time: 12h 30m
Theory classes: 5h
Self study: 7h 30m

Module 4: SYSTEM INTEGRATION
Description:
content english
Related activities:
To establish the needed data and its structure in order to fully integrate the robot operation, the process station operation and the SCADA supervisory system. To configure an OPC server in order to make possible the complete system integration
Working in groups, to configure system communications and realize the right database implementation in order to extract different reports related with the production of the FMS automatized line.
Learning time: 12h 30m
Theory classes: 5h
Self study: 7h 30m
Qualification system

Laboratory test (individually): 20%
Project results (in group): 50%
Small project modification (individually): 30%

Bibliography

Basic:
