Course guide
210121 - EST II - Structures II

Unit in charge: Barcelona School of Architecture
Teaching unit: 753 - TA - Department of Architectural Technology.
Degree: DEGREE IN ARCHITECTURE STUDIES (Syllabus 2014). (Compulsory subject).
Academic year: 2022  ECTS Credits: 6.0  Languages: Catalan, Spanish, English

LECTURER

Coordinating lecturer: CARLOS MUÑOZ BLANC

Others:
Primer quadrimestre:
FRANCESC XAVIER ALDABO FERNANDEZ - 1SM1 (Lab.) - 1ST1 (Teoria). Català
LUCRECIA JANNETH CALDERÓN VALDIVIEZO - 1ST1 (Lab.). Castellà
CARLOS MUÑOZ BLANC - 1SM1 (Teoria + Lab.). Castellà
ROGER SEÑIS LÓPEZ - 1SM1 (Lab.). Català
LAURA VALVERDE ARAGON - 1ST1 (Lab.). Castellà

Segon quadrimestre:
FRANCESC XAVIER ALDABO FERNANDEZ - 2SM2 (Lab.), 2ST2 (Teoria). Català
CARLOS MUÑOZ BLANC - 2SM2 (Teoria + Lab.). Castellà
JOAQUIM ESCODA LLORENS - 2ST2 (Lab.). Català
ELENA OLIVER SAIZ - 2SMA (Teoria + Lab.). Anglès
ROGER SEÑIS LOPEZ - 2ST2 (Lab.). Català
LAURA VALVERDE ARAGON - 2ST2 (Lab.). Castellà

REQUIREMENTS

It is necessary to have a minimum grade of 4 in Structures I.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
ET13. Translation from Spanish slope
ET14. Translation from Spanish slope
ET2. Translation from Spanish slope
ET3. Translation from Spanish slope
ET1. Translation from Spanish slope
ET6. Translation from Spanish slope
ET10. Translation from Spanish slope
ET4. Translation from Spanish slope
ET7. Translation from Spanish slope
ET8. Translation from Spanish slope

General:
CG4. Translation from Spanish slope
Transversal:
CT2. Translation from Spanish slope
CT3. Translation from Spanish slope
CT4. Translation from Spanish slope
CT5. Translation from Spanish slope

Basic:
CB1. Translation from Spanish slope
CB2. Translation from Spanish slope
CB3. Translation from Spanish slope
CB4. Translation from Spanish slope
CB5. Translation from Spanish slope

TEACHING METHODOLOGY
Go to catalan or spanish version.

LEARNING OBJECTIVES OF THE SUBJECT
The course STRUCTURES II is the core course of the area of the theory of structures corresponding to the third year of the Degree in Architecture Studies (GArqETSAB).

The objective of this course is that the student understands and learns the basic general principles for the global design of medium-rise building structures, the suitability of the structural typology and the material, and that he can develop an integrated architectural and a structural design.

The course focuses on reinforced concrete moment-resisting frames and one-way and two-way slabs. It defines the suitability and the feasibility of each structural typology, as well as emphasizes the relationship between Architecture and Structural Design. As a result, the student may be able to do the preliminary design of the main members of the structure (columns, beams and slabs), and the determination, at a basic level, of their internal forces and reinforcement.

In addition, the course establishes the fundamental concepts that enable the students to deepen in more specific or complex studies through optional courses or official postgraduate programs that are taught from the department itself. The theoretical explanation is complemented by some practical exercises that are related to the design of building structures.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>32,0</td>
<td>21.33</td>
</tr>
<tr>
<td>Guided activities</td>
<td>12,0</td>
<td>8.00</td>
</tr>
<tr>
<td>Self study</td>
<td>84,0</td>
<td>56.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>22,0</td>
<td>14.67</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

- Course outline

Description:
The course is developed around a common backbone, the project of reinforced concrete frame structures for residential or office buildings. The students will work in a specific building throughout the course, from the preliminary design to the analysis of the main members of the structure.

The course covers the following topics:

- Introduction to reinforced concrete structures
- General approach to the structural project
- Actions in buildings and basis of structural design
- Introduction to materials: concrete and steel
- Global analysis of structures: Calculation methods, concept of stiffness, determination of internal forces
- Preliminary design of structures. General criteria and methods for beams and columns
- Linear v. non-linear analysis. Braced or un-braced structures
- Axial forces, general design principles
- Pure bending: longitudinal reinforcement of rectangular and T-shaped beams
- One-way and two-way building slabs
- Tangential forces: Shear and punching
- Combined axial and bending: buckling and column reinforcement
- Introduction to the strut-and-tie method. The importance of detailing in structures

Full-or-part-time: 150h
Theory classes: 26h 20m
Laboratory classes: 39h 40m
Self study: 84h
Continuous assessment
Continuous assessment will be based on two practical midterm exams that may also include some theoretical questions, either multiple-choice or short-answer type. These two written midterm exams will have a weight of 75% in the continuous assessment. The course also includes some assignments, which will be developed during class hours and will have a weight of 20% in the continuous assessment. During the course there will also be a complementary activity that will have a weight of 5% in the continuous assessment.

To be eligible for MH Honors, students must obtain a continuous-assessment mark higher than 9.00 and must inform the course coordinator (within a period not exceeding one week from the publication of the continuous-assessment marks) to prepare a specific exam.

Final assessment
If the student does not pass the continuous assessment, a final global exam can be carried out, in the format established by the teaching staff. This comprehensive final examination will cover the material from the entire course.

Telematic continuous assessment
In online teaching situations, continuous assessment will be carried out synchronously and asynchronously, by the methods established by the University and the School, with a periodic record of academic activity by submitting assignments, forums, questionnaires or any other means provided by the Atenea platform, or the alternative tools provided to the teaching staff. In situations in which this telematic teaching takes place when face-to-face teaching has already begun, or for non-academic reasons, any alterations to the weightings or regular teaching control systems will be communicated in detail to all students on the Atenea platform for every subject.

Final telematic assessment
If the continuous telematic assessment is not positive, a second assessment may be carried out consisting of a final overall test in telematic format to be established in accordance with the criteria of the lecturers in charge and the ICT resources and tools provided by the University or the School. The measures for adapting to distance teaching will be implemented in accordance with ICT security and personal data protection criteria to ensure compliance as regards Personal Data Protection legislation (RGPD and LOPDGDD).
BIBLIOGRAPHY

Basic:
- Buxadé, Carles; Margarit, Joan. Diseny i càlcul de seccions de formigó armat i sostres sense bigues [on line]. Barcelona: ETSAB, 1982 [Consultation: 08/05/2020]. Available on: http://hdl.handle.net/2117/90677.

Complementary:

RESOURCES

Other resources:
Notes of the course will be available in Atenea.

The teaching material corresponding to the following week will be published in advance, so that the student can prepare the classes.

The following material will be also published in Atenea:
- The reference standards (the Spanish Structural Code and the Eurocodes)
- Worked exercises from previous courses

The materials and documents of the subject may be written indistinctly in any languages of instruction.