Course guides
220008 - ENIA - Airspace, Air Navigation and Infrastructure

Last modified: 23/07/2021

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering.

Degree: BACHELOR’S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject).
BACHELOR’S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2021 ECTS Credits: 4.5 Languages: Catalan

LECTURER

Coordinating lecturer: Enrique García Melendo
Others: Jon Tugores, Xavier Roca, Joan Antoni Castillo

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. GrETA/GrEVA - An overall understanding of air navigation systems and the complexity of air traffic

TEACHING METHODOLOGY

In the theoretical classes teachers will explain concepts, methods and results, showing them with some examples to facilitate understanding.
The sessions in the classrooms the teacher guide the student in applying theoretical concepts to workgroup.

LEARNING OBJECTIVES OF THE SUBJECT

Know the organization of the air transport system and air navigation system, their rules and the institutions that regulate these systems, and the elements of the air navigation and their relationship with the airport. Particularly, to understand the air space structure, the instrumental navigation techniques, the procedures used by airplanes in the controlled air space, the navigations aids and their relationship with the airport both from standpoint of design and operation.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>67.5</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>31.0</td>
<td>27.56</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>14.0</td>
<td>12.44</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h
1. Introduction to air navigation

Description:
- 1.1 Definitions
- 1.2 History
- 1.3 Air navigation techniques

Related activities:
- Theory lectures

Full-or-part-time: 10h
- Theory classes: 2h
- Self study: 8h

2. Flight basic instruments

Description:
- 2.1 Anemometer, altimeter and vertical speed indicator
- 2.2 Attitude indicator, artificial horizon and direction indicator
- 2.3 Others

Related activities:
- Theory and practice lectures

Full-or-part-time: 11h
- Theory classes: 3h
- Practical classes: 2h
- Self study: 6h

3. Institutional framework

Description:
- 3.1 Basic regulation
- 3.2 National agencies
- 3.3 International agencies

Related activities:
- Theory lectures

Full-or-part-time: 9h
- Theory classes: 2h
- Self study: 7h
4. Air navigation systems

Description:
- 4.1 Visual flight
- 4.2 Instrumental flight with VORD/DME
- 4.3 Instrumental flight with NDB
- 4.4 Instrumental flight with ILS
- 4.5 Onboard Systems (ACAS, GPWS)
- 4.6 Autonomous systems (INS)

Related activities:
Theory and practice lectures

Full-or-part-time: 18h 30m
- Theory classes: 7h
- Practical classes: 4h
- Self study: 7h 30m

5. Airspace

Description:
- 5.1 Division of the airspace
- 5.2 Classification of the airspace

Related activities:
Theory lectures

Full-or-part-time: 16h
- Theory classes: 4h
- Self study: 12h

6. Navigational charts, flight plans and weather service

Description:
- 6.1 Navigational charts
- 6.2 Flight plans
- 6.3 Weather service

Related activities:
Theory and practice lectures

Full-or-part-time: 11h
- Theory classes: 3h
- Practical classes: 2h
- Self study: 6h
7. Air navigation services

Description:
7.1 Air Traffic Control service (ATC)
7.2 Flight Information Service (FIS)
7.3 Advisory Service
7.4 Alert Service

Related activities:
Theory lectures

Full-or-part-time: 10h
Theory classes: 2h
Self study: 8h

8. Special activities in airspace

Description:
8.1 UAV

Related activities:
Theory and practice lectures

Full-or-part-time: 14h
Theory classes: 4h
Practical classes: 2h
Self study: 8h

9. Airport infrastructures

Description:
9.1 Construction of airport infrastructure
9.2 Examples of airport infrastructure

Related activities:
Theory lectures

Full-or-part-time: 13h
Theory classes: 4h
Practical classes: 4h
Self study: 5h
1. **Theory/practice classes**

Description:
Pre and post lecture preparation and class attendance. Class demonstrations with software support to perform flight simulations.

Specific objectives:
Transferring the necessary knowledge for a correct interpretation of the developed contents during theory sessions, and answers to questions related to the course syllabus.

Material:
1. Recommended textbooks found in the course bibliography
2. Related technical articles.

Delivery:
This activity is related to midterm and final exams.

Full-or-part-time: 105h
- Theory classes: 23h 30m
- Practical classes: 14h
- Self study: 67h 30m

2. **Airport infrastructure practice session**

Description:
Practice session performed in classroom related to airport infrastructures

Specific objectives:
To extend the presented contents in the theory sessions.

Material:
Support webpages

Delivery:
Students will develop a practice in classroom with the professor's support. Assessment of this activity will be a 10% of the final grade.

Full-or-part-time: 1h 30m
- Theory classes: 1h 30m

3. **Mid-term exam**

Full-or-part-time: 3h
- Theory classes: 3h
4. Final exam

Description:
It will consist on an individual exam in the classroom

Specific objectives:
To develop and show the knowledge acquired during theory and practice sessions.

Material:
Exam statement

Delivery:
Resolved exam on the exam statements handed out to the student.

Full-or-part-time: 3h
Theory classes: 3h

GRADING SYSTEM

The final grade is the sum of the following grades:

Final grade = 0.1 * Act + 0.45 * ExPar + 0.45 * ExFinal

Act: grade of the infrastructures report
ExPar: midterm exam grade
ExFinal: final exam grade

Students who did not take the midterm exam, or want to improve the grade obtained in the midterm exam, will have the option to improve or recover the result in the final exam. In this case the final grade will be:

Final grade = 0.45 * Max [ExPar, (0.8 * ExRec + 0.2 * ExPar1)] + 0.45 * ExFinal + 0.1 * Act

ExRec = Recovery exam.
Max = Maximum.

In other words, the midterm mark will improve as long as it is higher.

EXAMINATION RULES.

Except at the exam, the teacher is available to be consulted and it's possible to discuss the activities with the other students. A forum in ATENEA is enable to discuss and share information between the students or to ask for help from other students.

BIBLIOGRAPHY

Basic:

Complementary:
- Internacional Civil Aviation Organization. Operación de aeronaves: normas y métodos recomendados internacionales: anexo 6 al

RESOURCES

Hyperlink:
- www.eurocontrol.int. Eurocontrol
- www.icao.int. International Civil Aviation Organization
- www.aena.es. Aeropuertos Españoles y Navegación Aérea
- www.esa.int. European Space Agency