Course guides

220009 - F2 - Physics II

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 748 - FIS - Department of Physics.

Degree: BACHELOR'S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject). BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Compulsory subject).

Last modified: 29/05/2020

Academic year: 2020 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: Carles Serrat Jurado
Others: CRINA MARIA COJOCARU - CRISTINA MASOLLER - JAUME CALAF ZAYAS

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. Understanding and mastery of basic concepts about the general laws of mechanics, thermodynamics and electromagnetism fields and waves and their application to solving problems in engineering.

TEACHING METHODOLOGY

The directed learning consists of several processes. At first, it is necessary to consider the theory classes which develop in a big group. The teaching staffs introduce, in a brief way, general objectives of the chapter. Later, it is attempted to involve students with exercises for their active participation. The material of this part is in ATENEA: objectives, concepts, examples, evaluated programmed activities and bibliography. In second place, resolution of exercises, which develop in medium groups, are carried out. People work in reduced groups doing problems and exercises related with the objectives of the subject. This is an opportunity to develop transversal competences of work in team and to introduce, for the first time, concepts of cooperative learning. In last place, laboratory practices allow to develop basic concepts of methodology, objectives, experimental material, results and conclusions. Also it is a way to know the scientific method for the resolution of technological challenges. These practices are made in groups small, teams of two persons. Students have to prepare some part of work out of the laboratory classroom. This work could be individual or in group. Finally, it is necessary to stand out a time dedicated to autonomous learning dedicated to recommended readings and exercises proposed.

LEARNING OBJECTIVES OF THE SUBJECT

If the Physics I course provides an understanding and domain of basic principles of Physics in its Mechanics aspect, the Physics II course will extend this domain to Oscillations, Waves and Thermodynamics.
On overcoming the subject, students will have acquired:
Understanding and mastery of kinematics and dynamics of the oscillations of particles as well as of solids.
Understanding and mastery of wave phenomena.
Understanding and mastery of the concepts of Temperature and Heat, and their applications in Thermodynamics.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>14,0</td>
<td>9.33</td>
</tr>
<tr>
<td>Self study</td>
<td>90,0</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>32,0</td>
<td>21.33</td>
</tr>
<tr>
<td>Type</td>
<td>Hours</td>
<td>Percentage</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>14,0</td>
<td>9.33</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1. **Oscillations**

 Description:
 Simple harmonic motion (SHM). Examples.
 Damped oscillations.
 Forced oscillations.
 Superposition of SHMs.

 Related activities:
 (ENG) 1, 2, 3, 4, 6, 7, 8

 Full-or-part-time: 44h
 Theory classes: 10h
 Practical classes: 4h
 Laboratory classes: 4h
 Self study: 26h

2. **Waves**

 Description:
 General introduction to wave motion.
 Physical description of some waves.
 Wave propagation.
 Superposition of waves.
 Acústica.

 Related activities:
 (ENG) 1, 2, 3, 4, 5, 6, 7, 8

 Full-or-part-time: 71h
 Theory classes: 14h
 Practical classes: 7h
 Laboratory classes: 6h
 Self study: 44h
3. Thermodynamics

Description:
Temperature.
Heat and changes of phase (or state).
First law of Thermodynamics.
Second law of Thermodynamics.

Related activities:
(ENG) 1,2,3,5,6,7,8

Full-or-part-time: 35h
Theory classes: 8h
Practical classes: 3h
Laboratory classes: 4h
Self study : 20h

ACTIVITIES

ACTIVITY 1: THEORY SESSIONS

Full-or-part-time: 78h
Theory classes: 28h
Self study: 50h

ACTIVITY 2: PRACTICAL SESSIONS

Full-or-part-time: 37h
Practical classes: 14h
Self study: 23h

ACTIVITY 3: LABORATORY

Full-or-part-time: 26h
Laboratory classes: 12h
Self study: 14h

ACTIVITY 4: FIRST EVALUATION TEST

Full-or-part-time: 2h
Theory classes: 2h

ACTIVITY 5: SECOND EVALUATION TEST

Full-or-part-time: 2h
Theory classes: 2h
ACTIVITY 6: LABORATORY EVALUATION TEST

Full-or-part-time: 2h
Laboratory classes: 2h

ACTIVITY 7: ATENEA EVALUATION TEST

Full-or-part-time: 3h
Self study: 3h

ACTIVITY 8: DELIVERING WORKS

Full-or-part-time: 8h
Self study: 8h

GRADING SYSTEM

The final grade is the weighted sum of the various grades.

- If the final exam has chosen the modality of the Second Partial (explained in Activity 5):
 Final Grade = 0.32 \times N1A + 0.43 \times N2A + 0.15 \times NL + 0.10 \times NAC

- If the final exam has chosen the modality of the Global Exam (explained in Activity 5):
 - If the Global Examination grade, NEG, is greater than the grade of the First Partial, N1A:
 Final Grade = 0.32 \times NEG + 0.43 \times NEG + 0.15 \times NL + 0.10 \times NAC
 - If the Global Examination grade, NEG, is smaller than the grade of the First Partial, N1A:
 Final Grade = 0.32 \times N1A + 0.43 \times NEG + 0.15 \times NL + 0.10 \times NAC

N1A: First Partial score (activity 4)
N2A: Second Partial score (activity 5);
NEG: Global Exam grade (activity 5);
NL: grade of the laboratory (activity 6);
NAC: continuous evaluation grade (activity 7);

EXAMINATION RULES.

BIBLIOGRAPHY

Basic:
- Tipler, Paul Allen [et al.]. Física para la ciencia y la tecnología, vol. 1B, Oscilaciones y ondas [on line]. Barcelona: Reverté, 2005
- Tipler, Paul Allen [et al.]. Física para la ciencia y la tecnología, vol. 1C, Termodinámica [on line]. Barcelona: Reverté, 2005

Complementary:

RESOURCES

Hyperlink:
- Apunts de l'assignatura a Atenea. http://atenea.upc.edu/moodle
- Controls i notes en Aransa. http://aransa.upc.es
- Física con ordenador (Ángel Franco García). http://www.ehu.es