Course guide
220022 - TE - Structural Theory

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering.

Degree: BACHELOR’S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject).
BACHELOR’S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2023 ECTS Credits: 7.5 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: Rafael Weyler Pérez

Others: Fruitos Bickham, Oscar Alejandro
Alegre Carrasquer, Daniel
Martínez Piñol, José Ramón

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. GrETA/GrEVA - An understanding of the behaviour of structures under stress in ordinary and extreme conditions.
2. GrETA/GrEVA - An adequate understanding of the following, as applied to engineering: principles of continuum mechanics and techniques for calculating response.

TEACHING METHODOLOGY

It is divided into three parts:
· Theory lessons where the basic concepts are developed. They took place in the classroom and it is used the expositive method.
· Exercises lessons, where the theoretical concepts are applied to the resolution of practical examples. It takes place in the classroom, in smaller groups than the ones of theory lessons.
· Laboratory practices, where, in reduced groups and in a guided way, the students get in contact with the experimental methodology. At the same time, it will be proposed the realization of problems and exercises, as well as the elaboration of a laboratory report that has to be made out of the class hours.

LEARNING OBJECTIVES OF THE SUBJECT

Get the student to understand the behaviour of the structures and resistant structures and to be able of design a structure that is capable of support the efforts that the structures are brought under in good conditions, facing breaking and with deformations compatible with their functionality.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>47,0</td>
<td>25.07</td>
</tr>
<tr>
<td>Hours small group</td>
<td>7,0</td>
<td>3.73</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>21,0</td>
<td>11.20</td>
</tr>
<tr>
<td>Self study</td>
<td>112,5</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 187.5 h
CONTENTS

1. Elasticity fundaments.

Description:

Full-or-part-time: 65h 30m
Theory classes: 15h
Practical classes: 7h 30m
Laboratory classes: 3h
Self study : 40h

2. Prismatic part: Study of the straight section.

Description:

Full-or-part-time: 65h 30m
Theory classes: 15h
Practical classes: 7h 30m
Laboratory classes: 3h
Self study : 40h

Description:

Full-or-part-time: 31h
Theory classes: 7h
Practical classes: 6h
Laboratory classes: 2h
Self study : 16h

4. Structure calculus

Description:

Full-or-part-time: 25h 30m
Theory classes: 8h
Practical classes: 1h 30m
Self study : 16h

ACTIVITIES

THEORY SESSIONS

Full-or-part-time: 77h
Theory classes: 42h
Self study: 35h
PROBLEM SESSIONS

Full-or-part-time: 71h
Practical classes: 21h
Self study: 50h

LABORATORY SESSIONS

Full-or-part-time: 19h 30m
Laboratory classes: 7h
Self study: 12h 30m

ACTIVITY

Full-or-part-time: 15h
Self study: 15h

EXAMS

Full-or-part-time: 5h
Theory classes: 5h

GRADING SYSTEM

Laboratory practices: 10%
Partial exam: 30%
Final exam: 50%
Proposed activity 10%
It will be a method to recover unsatisfactory results in the partial exam.

EXAMINATION RULES.

The laboratory practices along with the laboratory reports are mandatory to pass the subject.

BIBLIOGRAPHY

Basic:

Complementary: