Degree competences to which the subject contributes

Specific:

4. GrETA/GrEVA - Applied knowledge of materials science and technology; mechanics and thermodynamics; fluid mechanics; aerodynamics and flight mechanics; navigation systems and air traffic; aerospace technology; structural theory; economy and production; projects; environmental impact.

General:

1. THE ABILITY TO ANALYSE AND SYNTHESISE: The ability to think abstractly about the fundamental concepts of a text or exposition and to intelligibly present the result of one's work.

Transversal:

2. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.

3. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

Teaching methodology

The teaching methodology will consist in:

· In-class sessions for the exposition of the contents
· In-class practical work (exercises and problems)
· Autonomous work for the development of the project.
· Collaborative work in groups.
· Autonomous study.

Learning objectives of the subject

Introduce the theoretical and practical knowledge that is needed so the student can aboard the fulfilment of any kind of project in the field of aeronautics engineering. In this subject, it is remarked the intention that the student acquire the knowledge and the ability of using the necessary tools for: the defining and concept of the project, the management of the project, the study of alternatives and making decisions taking environmental issues into account.

The fundamental objectives are:
220028 - Projects

- Comprehension of the basic concepts that surround a project
- Application of work methodologies, both in group and individually, that are need for the development of projects (project management)
- Promotion of the student creativity.
- Analysis of the problems to be solved and the conditions that a project involve.
- Synthesis of the alternatives of the solution of the project
- Evaluation of the solution taken and of the work carried out during the development of the project.
- Develop of the basic engineering of the proposed solution.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 32h</th>
<th>21.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 28h</td>
<td>18.67%</td>
</tr>
<tr>
<td></td>
<td>Self study: 90h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
1. The project in engineering

Learning time: 18h
Theory classes: 4h
Laboratory classes: 4h
Self study: 10h

Description:
1.3 L'entorn col·laboratiu BSCW. Una eina per al treball en grup: Funcionament de l'entorn. Organització de la documentació. Treball sobre l'entorn. Registre i accés al BSCW

Related activities:
(ENG) Activitat 1: Sessions grup gran/teoria
Activitat 2: Exercicis sessions de teoria
Activitat 3: Cas pràctic de realització projecte

2. Analysis and synthesis in a project

Learning time: 36h
Theory classes: 8h
Laboratory classes: 8h
Self study: 20h

Description:

3. Planning and programming of the projects

Learning time: 27h
Theory classes: 6h
Laboratory classes: 6h
Self study: 15h

Description:
4. Estimated cos and economic evaluation of the projects

Learning time: 27h
- Theory classes: 6h
- Laboratory classes: 6h
- Self study: 15h

Description:

5. Project phases and basic document

Learning time: 42h
- Theory classes: 8h
- Laboratory classes: 4h
- Self study: 30h

Description:
Planning of activities

<table>
<thead>
<tr>
<th>ACTIVITY 1: THEORY SESSIONS</th>
<th>Hours: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 14h</td>
</tr>
<tr>
<td></td>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 2: EXERCISES THEORY SESSIONS</th>
<th>Hours: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 14h</td>
</tr>
<tr>
<td></td>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 3: CASE STUDY OF MAKING PROJECT</th>
<th>Hours: 84h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laboratory classes: 28h</td>
</tr>
<tr>
<td></td>
<td>Self study: 56h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 4: FINAL EXAM</th>
<th>Hours: 14h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVITY 5: PROJECT EVALUATION. ORAL PRESENTATION</th>
<th>Hours: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 8h</td>
</tr>
</tbody>
</table>

Qualification system

The Final Mark of this subject will be calculated as the weighted average of the following marks:
- Final exam 30%
- Theory exercises 20%
- Project documents 10%
- Oral presentation of the project 5%
- Individual work in the project 35%

One of the parameters considered to assess the student work in the laboratory is his/her participation on the weekly follow-up sessions. As such, the laboratory sessions are considered as evaluation activities, therefore the non-justified absence to any of the laboratory sessions will involve a qualification of ABSENT (NO PRESENTAT). The session devoted to the final project presentation constitutes also an evaluation activity, the non-attendance to this session will also involve a qualification of ABSENT (NO PRESENTAT).

The in-class exercises mark is obtained from the activities and work developed in class related to the concepts introduced in each session and its substitution by alternative activities cannot be requested.

The assessment of the project documents will consider their content and formal aspects.
Regulations for carrying out activities

Activity 3. Project Development
Students will get organized in collaborative teams in order to develop the project work. Team members have to choose a representative that will act as group coordinator.

The contribution of each student to the team work will be assessed by the team supervisor. In order to do so, each team should develop for each laboratory session an agenda with the topics to discuss in the next meeting, and the minutes of the meeting including the topics dealt with and the agreements reached.

The presence of the student in the laboratory sessions is considered as an evaluation activity, therefore attendance to laboratory sessions is mandatory for all team members. Attendance to laboratory sessions constitutes a requirement to be able to pass the subject. At the beginning of each laboratory session, the team supervisor will hand over a signatures sheet for the students to formally register their attendance to the meeting.

The virtual collaborative environment BSCW must be used to develop the project work. All the project information, both generated and used by the team, must be uploaded to the BSCW folder structure. For evaluation purposes, the professors will exclusively consider the information uploaded to the BSCW.

The contents and format of the documentation to be delivered during the project development will be defined early in the semester. All documents have to be available in the corresponding folder of the BSCW environment. Works delivered later than the agreed deadlines will not be admitted for evaluation. Teams not delivering their work will get a qualification of ABSENT (NO PRESENTAT).

Activity 4. Final theory exam
The written evaluation may consist or include a multiple-choice test with four possible answers. In this case, each wrong answer will reduce the mark by 0.5 points, while a blank answer will not affect the mark. In addition, the written exam may involve solving practical exercises.

The last week of the semester each team will perform a project presentation of around 20-25 minutes. To develop the presentation computer media will be available. The oral presentation will be assessed by Department professors, who will ask any question they might consider relevant and they will assess different aspects of the presentation, such as: structure, clarity, dynamics, answers to the questions, media used, etc.
Bibliography

Basic:

Complementary:

Others resources:

Notes developed by the Department professors.