Course guide
220032 - DA - Aeroplane Design

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering.
Degree: BACHELOR’S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Compulsory subject).
Academic year: 2022 ECTS Credits: 4.5 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: ESTER COMELLAS SANFELIU
Primer quadrimestre:
ESTER COMELLAS SANFELIU - Grup: 21

Others:

PRIOR SKILLS

The student must arrive with knowledge of aerodynamics, flight mechanics and aerospace structures. During the course, you must also apply concepts related to economics and materials science. It is also recommended that students master technical English as it will be used throughout the course.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
3. GrEVA - An adequate understanding of the following, as applied to engineering: calculation methods for aeronautical design and development; the use of aerodynamic experimentation and the most important parameters in theoretical application; the experimental techniques, equipment and measuring instruments used in the discipline; simulation, design, analysis and interpretation of in-flight experiments and operations; aircraft maintenance and certification systems.
5. GrEVA - Applied knowledge of aerodynamics, mechanics and thermodynamics, flight mechanics, aircraft engineering (fixed-wing and rotary-wing), structural theory.

Transversal:
2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

TEACHING METHODOLOGY

The teacher will review the fundamentals of airplane design in the expository classes. Students must have read the material and performed the preparatory activities indicated in Atenea. During practical sessions, the syllabus will be further worked on through the development of key aspects of the group assignment, which will consist in the conceptual design of an airplane.
LEARNING OBJECTIVES OF THE SUBJECT

The main objective of this course is to bring students to the different aspects of the Aircraft design:
2. Functional design of the different parts of an airplane. Integration and interferences.
3. Influence of the actions of the aircraft and aerodynamics in the design process.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>31.0</td>
<td>27.56</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>14.0</td>
<td>12.44</td>
</tr>
<tr>
<td>Self study</td>
<td>67.5</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h

CONTENTS

Introduction to airplane design

Description:
Unit 1: History of flight
Unit 2: Economical aspects
Unit 3: Project phases
Unit 4: General configuration

Full-or-part-time: 12h 30m
Theory classes: 5h
Practical classes: 3h
Self study : 4h 30m

Performances and global design

Description:
Unit 5: Weight and balance of the aeroplane
Unit 6: Methods for performance estimation
Unit 7: Preliminary sizing
Unit 8: Weight-range diagram
Unit 9: Drag

Full-or-part-time: 40h
Theory classes: 9h
Practical classes: 4h
Self study : 27h
Design of different functional blocks of an airplane

Description:
Unit 10: Fuselage design
Unit 11: Wing design
Unit 12: Tail design
Unit 13: Landing gear design

Full-or-part-time: 43h
Theory classes: 13h
Practical classes: 5h
Self study: 25h

Structural design of airplanes

Description:
Unit 14: Loads on the airplane
Unit 15: Airframe design

Full-or-part-time: 17h
Theory classes: 4h
Practical classes: 2h
Self study: 11h

ACTIVITIES

Graded activities

Description:
Graded activities that will be done throughout the course via Atenea and in the theoretical sessions in class.

Specific objectives:
Incentivate the preparation of material required previous to each theoretical session. Encourage autonomous learning.

Delivery:
Dates to be agreed at the beginning of the course.

Full-or-part-time: 17h 30m
Theory classes: 2h
Self study: 15h 30m
Mid term assignment delivery

Description:
First delivery of the assignment.

Specific objectives:
Assess the knowledge of modules 1 and 2. Encourage autonomous learning.

Delivery:
Date to be agreed at the beginning of the course.

Related competencies:
- CE26-GREVA. GrEVA - Applied knowledge of aerodynamics, mechanics and thermodynamics, flight mechanics, aircraft engineering (fixed-wing and rotary-wing), structural theory.
- CE25-GREVA. GrEVA - An adequate understanding of the following, as applied to engineering: calculation methods for aeronautical design and development; the use of aerodynamic experimentation and the most important parameters in theoretical application; the experimental techniques, equipment and measuring instruments used in the discipline; simulation, design, analysis and interpretation of in-flight experiments and operations; aircraft maintenance and certification systems.
- 06 URI N3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Full-or-part-time: 22h
Self study: 22h

End term assignment delivery

Description:
End term assignment delivery.

Specific objectives:
Assess the knowledge of modules 3 and 4. Encourage autonomous learning.

Delivery:
Date to be agreed at the beginning of the course.

Related competencies:
- CE26-GREVA. GrEVA - Applied knowledge of aerodynamics, mechanics and thermodynamics, flight mechanics, aircraft engineering (fixed-wing and rotary-wing), structural theory.
- CE25-GREVA. GrEVA - An adequate understanding of the following, as applied to engineering: calculation methods for aeronautical design and development; the use of aerodynamic experimentation and the most important parameters in theoretical application; the experimental techniques, equipment and measuring instruments used in the discipline; simulation, design, analysis and interpretation of in-flight experiments and operations; aircraft maintenance and certification systems.
- 06 URI N3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

Full-or-part-time: 22h
Self study: 22h
Defense of group assignment

Description:
Each student will participate in at least one presentation of the assignment done in groups, where they will have to synthesize and defend the work done.

Delivery:
Date to be agreed at the beginning of the course.

Full-or-part-time: 12h
- Theory classes: 4h
- Self study: 8h

In-person sessions

Full-or-part-time: 39h
- Theory classes: 25h
- Practical classes: 14h

GRADING SYSTEM

The grading system will consist of the graded activities completed throughout the course, a group assignment and two presentations of the group assignment. In the mid terms, the assignment (with the theory explained so far) and an oral presentation will be evaluated. At the end, the complete assignment will be delivered and a second presentation will be made. Each student must at least present once, either in mid term or at the end.

The evaluation final consists of the midterm hand-in of the group assignment 20%, the final hand-in of the group assignment 50%, the individual grade of the presentation 20% and the mean of the graded activities 15%.

BIBLIOGRAPHY

Basic:

Complementary: