220039 - Experimental Design

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 715 - EIO - Department of Statistics and Operations Research
Academic year: 2017
Degree: BACHELOR’S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR’S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Teaching staff
Coordinator: INES M. ALGABA JOAQUIN
Others: MONTSERRAT PEPIO VIÑALS - SALVADOR CASADESUS PURSALS

Degree competences to which the subject contributes

Specific:
1. The ability to solve mathematical problems that may arise in an engineering context. The ability to apply knowledge of linear algebra; geometry; differential geometry; differential and integral calculus; differential and partial differential equations; numerical methods; numerical algorithms; statistics and optimisation

Transversal:
2. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Teaching methodology

The course is divided into parts:
Theory classes
Practical classes
Self-study for doing exercises and activities.
In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with examples appropriate to facilitate their understanding.
In the practical classes (in the classroom), teachers guide students in applying theoretical concepts to solve problems, always using critical reasoning. We propose that students solve exercises in and outside the classroom, to promote contact and use the basic tools needed to solve problems.
Students, independently, need to work on the materials provided by teachers and the outcomes of the sessions of exercises/problems, in order to fix and assimilate the concepts.
The teachers provide the curriculum and monitoring of activities (by ATENEA).

Learning objectives of the subject

The main objective is to capacitate the students to model and optimize the behavior of processes. To this end, they will learn how to design the experimentation and to analyze and interpret the obtained results.
220039 - Experimental Design

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group: 30h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 45h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>

Content

Experimental Design

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Linear Regression</td>
</tr>
<tr>
<td>- Two-Level Factorial Designs</td>
</tr>
<tr>
<td>- Two-Level Fractional Factorial Designs</td>
</tr>
<tr>
<td>- Modelling variability</td>
</tr>
<tr>
<td>- Weighted Least Squares</td>
</tr>
<tr>
<td>- Sequential Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time: 75h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 30h</td>
</tr>
<tr>
<td>Self study: 45h</td>
</tr>
</tbody>
</table>

Related activities:
- Theory classes, practical classes, self-study, evaluation activities

Qualification system

The final grade depends on the following assessment criteria:
- Linear regression project, weight: 20%
- Classroom deliverable, weight: 30%
- Exam, weight: 50%

Any student who cannot attend any of the written tests (classroom deliverable and/or exam) or that wants to improve the obtained grade, will have the opportunity to improve that grade by taking an additional global written exam that will take place the date fixed in the calendar of final exams. The grade obtained in this test will range between 0 and 10, and will replace that of the two written tests in case it is higher.

Bibliography

Basic:

Others resources:
- Material available in ATENEA