220042 - Materials Characterization and Surface Engineering

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 702 - CMEM - Department of Materials Science and Metallurgy
Academic year: 2017
Degree: BACHELOR'S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: English

Teaching staff
Coordinator: MARIA NURIA SALAN BALLESTEROS - ELISA RUPEREZ DE GRACIA

Degree competences to which the subject contributes

Specific:
1. An understanding of the fundamentals of science, technology and materials chemistry, as well as the relationship between microstructure, synthesis and processing and the properties of materials.

Teaching methodology

The course is divided into parts:
Theory classes
Practical classes
Self-study for doing exercises and activities.
In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with examples appropriate to facilitate their understanding.
In the practical classes (in the classroom), teachers guide students in applying theoretical concepts to solve problems, always using critical reasoning. We propose that students solve exercises in and outside the classroom, to promote contact and use the basic tools needed to solve problems.
Students, independently, need to work on the materials provided by teachers and the outcomes of the sessions of exercises/problems, in order to fix and assimilate the concepts.
The teachers provide the curriculum and monitoring of activities (by ATENEA).

Learning objectives of the subject

Know the different techniques of study, analysis and characterization of materials, and the differences between them in order to make a correct choice in case of requirement.
Learn about the latest advances in coatings and different utilities of each.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study:</td>
<td>45h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
220042 - Materials Characterization and Surface Engineering

Content

<table>
<thead>
<tr>
<th>Module 1: Materials Characterisation Techniques</th>
<th>Learning time: 50h</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Optical Microscopy (OM, STEREOSCOPIC)</td>
<td>Theory classes: 20h</td>
</tr>
<tr>
<td>* Electronic Microscopy (SEM, TEM)</td>
<td>Self study: 30h</td>
</tr>
<tr>
<td>* Other techniques (CONFOCAL, AFM, FIB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module 2: Surface Engineering</th>
<th>Learning time: 25h</th>
</tr>
</thead>
<tbody>
<tr>
<td>* PVD, CVD</td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td>* TBC (Thermal Barrier Coatings)</td>
<td>Self study: 15h</td>
</tr>
<tr>
<td>* DLC (Diamond Like Coatings)</td>
<td></td>
</tr>
</tbody>
</table>

Description:

- Optical Microscopy (OM, STEREOSCOPIC)
- Electronic Microscopy (SEM, TEM)
- Other techniques (CONFOCAL, AFM, FIB)
- PVD, CVD
- TBC (Thermal Barrier Coatings)
- DLC (Diamond Like Coatings)

Qualification system

- Deliverable module I: 30%
- Deliverable module II: 30%
- Teamwork: 40%

Bibliography