220108 - Power Converters

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 4,5
Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: Lamich Arocas, Manuel
Others: Arias Pujol, Antoni
José Luis Romeral Martínez

Prior skills

- Good knowledge of Circuits Theory
- Basic knowledge of electronic devices. (Diodes, Transistors, MOS-FET).
- Basic knowledge of Fourier analysis, (as given in Calculus Subject)

Degree competences to which the subject contributes

Specific:
1. Applied knowledge of power electronics.

Teaching methodology

Activities:
- Lectures on theoretical matters and practical exercises.
- Laboratory Sessions. During the laboratory sessions, different applications with converters will be developed at the simulation level.

Learning objectives of the subject

Show the students the structure and applications of different types of power converters and enable them to choose the suitable components. Study of converters used to drive electric machines, to link renewable sources to the grid, to built uninterrupted sources (UPS) and power supplies in general. Provide the basis for designing the control of these converters (related with the subjects of Automatic Control). Study of power transfer between electrical systems and electromechanical systems by means of converters. Study the performance of previous systems. Study of disturbances generated by electrical converters on the mains and electromagnetic fields in the environment.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Hours large group: 31h 27.56%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group: 14h 12.44%</td>
<td></td>
</tr>
<tr>
<td>Self study: 67h 30m 60.00%</td>
<td></td>
</tr>
</tbody>
</table>

220108 - Power Converters
Content

Power devices

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power diodes</td>
</tr>
<tr>
<td>Thyristors</td>
</tr>
<tr>
<td>MOS-FET, IGBT and MCT</td>
</tr>
<tr>
<td>Switching characteristics of power devices</td>
</tr>
<tr>
<td>Conduction and commutation loses</td>
</tr>
<tr>
<td>Passive components in Power Electronics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe the behaviour and characteristics of the different power devices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Simulation tools

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORCAD PSPICE circuits simulator</td>
</tr>
<tr>
<td>Matlab-Simulink systems simulator</td>
</tr>
<tr>
<td>"Sim Power Systems" toolbox</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related activities:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specific objectives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide simulation tools to evaluate the behaviour of power devices and power systems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Learning time: 7h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 5h</td>
</tr>
</tbody>
</table>

Uncontrolled rectifiers

<table>
<thead>
<tr>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>
Controlled rectifiers

Learning time: 20h
Theory classes: 6h
Laboratory classes: 2h
Self study: 12h

DC-DC Converters

Learning time: 20h
Theory classes: 6h
Laboratory classes: 2h
Self study: 12h

Inverters

Learning time: 26h
Theory classes: 9h
Laboratory classes: 3h
Self study: 14h

Description:
Types and calculations of voltages and currents
Control methods: Vector control
Resonant converters

Related activities:
Activity 1 and 2

Specific objectives:
Learn about DC-AC conversion
Learn the calculations and sizing of DC-AC converters

Static switches and regulators to phase control

Learning time: 4h 30m
Theory classes: 2h
Self study: 2h 30m

Description:
Types. Voltages and currents calculations
Control Methods

Related activities:
Activity 1

Specific objectives:
Knowing the structure and control techniques of AC-AC converters by means of phase control.
Learn the calculations and dimensioning of AC-AC converters by means of phase control.
Planning of activities

ACTIVITY 1: THEORY AND PROBLEM LESSONS

Hours: 73h 30m
- Theory classes: 28h
- Self study: 45h 30m

Description:
Teaching of theoretical concepts and realization of numerical exercises on different topics. Proposal of new numerical exercises or design tips.

Support materials:
Classroom with audiovisual media (PC and overhead projector)

Descriptions of the assignments due and their relation to the assessment:
Design exercises or numerical calculations will be proposed to ensure that students take the time to learn by themselves.

Specific objectives:
Teach the necessary theoretical knowledge and solve practical exercises to link the theory, the calculation methods and the design of power converters.

2. LABORATORY PRACTICE

Hours: 20h
- Laboratory classes: 10h
- Self study: 10h

3. SMALL DESIGN PROJECTS

Hours: 16h
- Laboratory classes: 4h
- Self study: 12h

4. MID-TERM EXAM

Hours: 1h
- Theory classes: 1h

5. FINAL EXAM

Hours: 2h
- Theory classes: 2h

Qualification system

- Partial exam 25%
- Final Exam 40%
- Practices consisting on simulation of several converters: 35%
Bibliography

Basic:

Complementary:

Others resources:

Audiovisual material
Apunts

Computer material
Software Matlab-Simulink amb Toolbox "Sim Power Systems"

Software ORCAD=PSpice