220121 - Mechanical Design and Manufacturing

Coordinating unit: 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 712 - EM - Department of Mechanical Engineering
Academic year: 2019
Degree: BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 3
Teaching languages: Spanish

Teaching staff
Coordinator: José Antonio Ortiz Marzo
Others: José Antonio Ortiz Marzo
Comas Cespedes, Esteve

Opening hours
Timetable: It's necessary to specify the schedule by e-mail.

Prior skills
Students must have achieved the objectives of graphic expression methods, materials technology and theory of machines and mechanisms

Teaching methodology
The teaching methodology is divided into two parts:
- On-site sessions to introduce the contents, in an expositive way with multimedia material and practical examples, short videos representative of the explained process, visits to the workshops and mechanical laboratories (depending on availability, visits to external companies), and resolution of basic problems, specially in module 2, where real cases of application are developed with the discussion of resolution alternatives.
- Autonomous work of study and performance of exercises, activities and group work.

Learning objectives of the subject
The basic objective is the knowledge of the different manufacturing processes of the most common components and their application according to the type of components depending on the surface finish and dimensional tolerances required. The student should also know and make use of the information available from the different suppliers or manufacturers of the technologies and processes involved. For this, references are given to specific websites or catalogs. There is an important part of this information that is in English, therefore, the student will have to make an effort to know technical English, as you will find when you start working professionally.
The student will have learned how to balance the engines and wheels of cars. You will also know the usefulness of flywheels.
The student, at the end of the course, will be able to identify and select the processes involved in the manufacture of components of the automotive sector. In this way, the available resources can be optimized, reducing production time and costs, increasing their quality and indirectly reducing energy consumption and waste volume.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 75h</th>
<th>Hours large group:</th>
<th>30h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study:</td>
<td></td>
<td>45h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Module 1: Welding processes</th>
<th>Learning time: 13h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

Description:
- **Topic 2.** Welding Processes. Welding with electrodes, MIG / MAG, TIG:

Related activities:
- Activity 1
- Activity 2
- Activity 4

Specific objectives:
At the end of module 1, the student should be able to name the different welding processes and select a particular process, depending on the type of part and material to be welded. The student will know the necessary safety elements.

<table>
<thead>
<tr>
<th>Module 2: Machining processes with rotary machines</th>
<th>Learning time: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 9h</td>
</tr>
<tr>
<td></td>
<td>Self study: 13h</td>
</tr>
</tbody>
</table>

Description:
- **Topic 4.** General concepts. General scheme. Type of machine tools. Material based tools. Surface coatings.
- **Topic 5.** Lathe. Type and geometry of cutting tools. Basic operations. Calculation of working conditions. Examples

Related activities:
- Activity 1
- Activity 2
- Activity 4
- Activity 5

Specific objectives:
At the end of module 2, the student should be able to name different machining processes and select a machining process, depending on the part geometry and material work, select the type of machine tool and the sequence of operations required.
Module 3. Mechanical optimization in the automobile

Description:

Related activities:
- Activity 1
- Activity 3
- Activity 5

Specific objectives:
At the end of module 3, the student should be able to know and understand the most common applications of dynamics in the car: flyers and balanced calculation of axles and engines.

Learning time:
- Theory classes: 12h
- Self study: 18h

Module 4. Other manufacturing processes

Description:

Related activities:
- Activity 1
- Activity 2
- Activity 5

Specific objectives:
At the end of module 4, the student should be able to name different manufacturing processes of components of the automotive sector.

Learning time:
- Theory classes: 4h
- Self study: 6h
Planning of activities

| ACTIVITY 1: THEORETICAL CLASSES | Hours: 58h
Theory classes: 26h
Self study: 32h |
|-----------------------------|----------------|
| ACTIVITY 2: MANUFACTURING WORK | Hours: 6h
Self study: 6h |
| Description: The students will have to present a work of manufacture in English language, with relation Road Safety. |
| Support materials: In Atenea a document will be shared with the appropriate instructions for carrying out the work. Depending on the selected work theme, specific initial documentation will be provided for its proper development. |
| Descriptions of the assignments due and their relation to the assessment: Group work. They will be delivered in the corresponding task, through the digital campus ATENEA, before the respective evaluation test. |
| Specific objectives: Teamwork. Strengthen skills in third language. Practical oral presentation of a work. |
| (ENG) EXAMEN PARCIAL | Hours: 4h
Self study: 4h |
| Description: Students must present a mechanical optimization work, in ENGLISH language |
| Descriptions of the assignments due and their relation to the assessment: In groups. The works will be delivered through the digital campus ATENEA, before the respective evaluation test. |
| ACTIVITY 4: MANUFACTURING FINAL TEST | Hours: 4h
Theory classes: 2h
Self study: 2h |
| ACTIVITY 5: FINAL TEST OPTIMIZATION MECHANICAL | Hours: 3h
Practical classes: 2h
Self study: 1h |
220121 - Mechanical Design and Manufacturing

Qualification system

The final grade of the course depends on four evaluation acts:

- 2nd activity (Work Manufacturing), weight: 10%
- 3rd activity (Mechanical Optimization Work), weight: 10%
- 4th activity (Manufacturing test), weight: 50%
- 5th activity (Mechanical Optimization test), weight: 30%

Any student who wishes to improve his grade may try it at the exam planned at the end of the course. The best mark is preserved.

Regulations for carrying out activities

Activity 2, obligatory, it will be done in a group and you must present a work by group.
Activity 3, obligatory, it will be done in a group and you must present a work by group.
Activities 4 and 5 (exams), it will be conducted individually.

Bibliography

Basic:

Complementary:

Others resources:

Throughout the course, Internet addresses are given for consultation and copies of articles to read that complement the explanations given in class.