Course guides
220126 - 220126 - Thermodynamics of Materials

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 724 - MMT - Department of Heat Engines.
Degree: BACHELOR’S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).
BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).
BACHELOR’S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Optional subject).
Academic year: 2020 ECTS Credits: 3.0 Languages: English

LECTURER

Coordinating lecturer: Frida Roman
Others: John M. Hutchinson, Yolanda Calventus

TEACHING METHODOLOGY

The course is divided into parts:
- Theory classes
- Practical classes
- Self-study for doing exercises and activities.
In the theory classes, teachers will introduce the theoretical basis of the concepts, methods and results and illustrate them with appropriate examples to facilitate their understanding. The practical classes will take place in the Laboratory, and in them, students will observe the different phenomena presented in the theory classes. Students need to work independently on the materials provided by teachers in order to assimilate the concepts. The teachers provide the syllabus and monitoring of activities (by ATENEA).

LEARNING OBJECTIVES OF THE SUBJECT

- Understanding of Thermodynamics applied to the phase transitions and its application to polymeric materials.
- Learn some experimental techniques for detecting phase transitions in polymeric materials.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>40.00</td>
</tr>
<tr>
<td>Self study</td>
<td>45,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 75 h
CONTENTS

Module 1: Thermodynamic Property Relations

Description:
- Review of The Laws of Thermodynamics
- Gibbs Equation
- Fundamental Thermodynamics relationships
- Maxwell’s Equations
- General equations for internal energy, enthalpy and entropy in terms of P,v , T and specific heats
- Equilibrium and stability criteria

Related activities:
Theory classes

Full-or-part-time: 15h
- Theory classes: 6h
- Self study: 9h

Module 2: First and Second order phase transitions

Description:
- First order phase transitions
- Second order phase transitions

Related activities:
Theory classes

Full-or-part-time: 7h
- Theory classes: 3h
- Self study: 4h

Module 3: First order phase transitions: crystallization and melting in polymeric materials

Description:
- Introduction and concepts of morphology
- Crystallisation kinetics. Nucleation and Growth
- Factors which affect the crystallisation process
- Properties related to the crystalline structure
- Melting temperatures, enthalpies and entropies of Fusion

Related activities:
Theory classes
Practical classes

Full-or-part-time: 20h
- Theory classes: 8h
- Self study: 12h
Module 4: Glass transition phenomena in polymeric materials

Description:
- Pseudo second order transitions
- Glass transition
- Effect of different parameters in glass transition
- Physical aging.

Related activities:
Theory classes
Practical classes

Full-or-part-time: 13h
Theory classes: 5h
Self study: 8h

Module 5: Curing reactions in thermosetting polymers

Description:
- Curing reactions
- Curing reactions of thermosetting materials
- Vitrification and devitrification
- Curing kinetics
- Characterisation techniques

Related activities:
Theory classes
Practical classes

Full-or-part-time: 20h
Theory classes: 8h
Self study: 12h

GRADING SYSTEM

The final grade depends on the following criteria:

- Final exam: 50%
- Coursework: 50%

Students that fail or do not present to the final exam (50%) that will take place at the end of the elective classes, will have the chance to repeat it in January, but, in this case, the maximum grade which can be awarded is 5/10.

BIBLIOGRAPHY

Basic:

Complementary: