Course guides
220144 - 220144 - Uav Sensors & Applications

Unit in charge: Terrassa School of Industrial, Aerospace and Audiovisual Engineering
Teaching unit: 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering.

Degree: BACHELOR’S DEGREE IN AEROSPACE TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).
BACHELOR’S DEGREE IN AEROSPACE VEHICLE ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2020 ECTS Credits: 3.0 Languages: English

LECTURER

Coordinating lecturer: Manel Soria

Others:

PRIOR SKILLS

Previous concepts include basic electronics, programming skills and familiarity with the use of computing tools for engineering, acquired in previous subjects of the degree.

TEACHING METHODOLOGY

Classroom lectures combined with assignments to be solved during the class with the help of the professor

LEARNING OBJECTIVES OF THE SUBJECT

To understand how different types of imaging sensors operate (RGB cameras, multispectral cameras, hyperspectral cameras) and how they can be used to gather useful information about the environment.

To obtain a panoramic of the current applications of UAVs for civilian applications.

To acquirie a hands-on experience reading and post-process UAV data.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>40.00</td>
</tr>
<tr>
<td>Self study</td>
<td>45,0</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 75 h
CONTENTS

Module 1: Introduction to imaging sensors

Description:
The fundamentals of image sensors will be described. The sensors to be described include monochrome cameras, color (RGB) cameras, multispectral cameras, hyperspectral cameras and thermal imaging cameras.

Specific objectives:
Understand current image sensors, their main properties and their applications in UAV systems.

Full-or-part-time: 25h
Theory classes: 10h
Self study : 15h

Module 2: Introduction to image processing for UAV applications

Description:

Full-or-part-time: 25h
Theory classes: 10h
Self study : 15h

Module 3: Guided project

Description:
The students will select the subject of their project in agreement with the professor. It will be based on a UAV imaging system (including spacecraft images). The students creativity in the selection of a project will be encouraged.

Some examples of possible bibliographic works are:
-Processing of spacecraft RAW images.
- Band-pass filters for multispectral imaging systems

Some examples of possible practical projects are:
-Characterization of a micro UAV camera
-Segmentation of planetary images
-Tracking of objects in a video

The students will work in groups. Each group will submit a report of the project, as well as a video presentation of their work.

Full-or-part-time: 25h
Theory classes: 10h
Self study : 15h

GRADING SYSTEM

First Assignment: 30%
Second Assignment: 30%
Project: 40%