230005 - FO - Fundamentals of Computers

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 701 - AC - Department of Computer Architecture
Academic year: 2019

Degree: BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)

ECTS credits: 6 Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: Beatriz Otero Calviño

Others:
MANEL GUERRERO ZAPATA
MARTA JIMENEZ CASTELLS
ANTONIO JAVIER VALVERDE AMADOR
FRANCISCO JORDAN
BEATRIZ OTERO CALVIÑO
SILVIA LLORENTE VIEJO
MARIO MACÍAS LLORET
TERESA MONREAL ARNAL
Tous Liesa, Rubén
Gil Gomez, María Luisa

Requirements

This course does not require having previously taken any other course.

Degree competences to which the subject contributes

Transversal:
1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.
The goals of this course are that:

1. The student must be able to code, test, and debug programs using the C language to solve elementary problems.

2. The student understands and masters the basics of procedural programming and uses the top-down design technique to solve the problems raised.

3. The student must understand what is about an operating system and its role on a computer functionality. He or She must know basic commands of a general purpose operating system.

Learning outcomes:

1. To Know the operation of a basic computer and how develop simple programs using it.

2. To use automatic tools for editing, compiling, running and debugging programs.

3. To correctly state the problem structure from a given problem description and identify alternative solutions.

4. To apply a suitable resolution choice and prove the correctness of that solution.

5. To know and correctly use the tools, instruments and applications, available at the lab, and properly achieve the analysis of the collected data.

6. To complete assigned tasks on a given schedule following the guidelines set by the course's profesor. The student must also be able to assess his or her work's progress, and the degree of fulfillment of this course's objectives.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 39h 26.00%</th>
<th>Hours small group: 26h 17.33%</th>
<th>Self study: 85h 56.67%</th>
</tr>
</thead>
</table>

Content

Topic 1. Basic computer architecture

Learning time: 7h
Theory classes: 3h
Laboratory classes: 2h
Self study: 2h

Description:
Basic structure of a computer: memory, I/O and CPU. Description of the three subsystems. Representation of the information. Memory units. Process of implementation of a program.

Topic 2. Basic programming concepts

Learning time: 25h 40m
Theory classes: 12h
Laboratory classes: 4h
Self study: 9h 40m

Description:

Topic 3. Flow control statements

Learning time: 32h
Theory classes: 12h
Laboratory classes: 4h
Self study: 16h

Description:

Topic 4. Data structures

Learning time: 38h
Theory classes: 12h
Laboratory classes: 6h
Self study: 20h

Description:
230005 - FO - Fundamentals of Computers

Topic 5. Functions

Learning time: 40h 20m
Theory classes: 16h
Laboratory classes: 4h
Self study: 20h 20m

Description:

Topic 6. Files

Learning time: 7h
Theory classes: 3h
Laboratory classes: 2h
Self study: 2h

Description:
Management of files.

Qualification system

Laboratory (40%) = (30% - 50%) Quizz + (70% - 50%) Project
Quizzes theoretical (0% - 20%)
Final exam (40% - 60%)

Bibliography

Basic:

Complementary: