Course guides
230013 - RP - Radiation and Propagation

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.

Degree:
BACHELOR’S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2009). (Compulsory subject).
BACHELOR’S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Compulsory subject).
BACHELOR’S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Compulsory subject).
BACHELOR’S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2010). (Compulsory subject).
BACHELOR’S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Compulsory subject).

Academic year: 2021 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER
Coordinating lecturer: Corbella Sanahuja, Ignasi
Others: Corbella Sanahuja, Ignasi
Fabregas Canovas, Francisco Javier
Lopez Martinez, Carlos
Mallorqui Franquet, Jordi Joan
Vall-Llossera Ferran, Mercedes Magdalena
Torres Torres, Francisco

PRIOR SKILLS
Good capability to operate complex numbers. Knowledge of Electromagnetic Fields and Waves and Circuit Theory.

REQUIREMENTS
Per GR ENG SIS AUDIOVIS
ELECTROMAGNETISME - Prerequisit
Per GR ENG SIS ELECTRONI
ELECTROMAGNETISME - Prerequisit
Per GR ENG SIST TELECOM
ELECTROMAGNETISME - Prerequisit
Per GR ENG TELEMÀTICA
ELECTROMAGNETISME - Prerequisit
Per GR CIÈNC I TECN TELE
ELECTROMAGNETISME - Prerequisit
Per GR ENG ÂMBIT TELECOM
ELECTROMAGNETISME - Prerequisit
Per GR ENG TEC I SER TEL
ONES ELECTROMAGNÈTIQUES - Precorequisit
DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Generical:
4. ABILITY TO IDENTIFY, FORMULATE AND SOLVE ENGINEERING PROBLEMS Level 2. To identify, model and pose problems starting from open situations. To explore the alternatives to solve the problem and to choose the best one according to a justified criterion. To know-how to make approaches. To propose and implement methods to validate the solutions. To have a complex system vision and of interactions among complex systems components
5. They will have acquired knowledge related to experiments and laboratory instruments and will be competent in a laboratory environment in the ICC field. They will know how to use the instruments and tools of telecommunications and electronic engineering and how to interpret manuals and specifications. They will be able to evaluate the errors and limitations associated with simulation measures and results.

Transversal:
1. TEAMWORK - Level 1. Working in a team and making positive contributions once the aims and group and individual responsibilities have been defined. Reaching joint decisions on the strategy to be followed.
2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections, premises and services that are available for designing and executing simple searches that are suited to the topic.
3. SELF-DIRECTED LEARNING - Level 2: Completing set tasks based on the guidelines set by lecturers. Devoting the time needed to complete each task, including personal contributions and expanding on the recommended information sources.

TEACHING METHODOLOGY

Lectures
Laboratory work and exercises
Laboratory reports
Self study (home work)
Short tests: Control exercises, grouped by subject, distributed thought out the course.
Long tests (Mid-term and Final exam)

LEARNING OBJECTIVES OF THE SUBJECT

Based on the knowledge of Electromagnetic Fields and Lineal Circuits Theory, the students will learn the fundamentals of transmission media, both, those based on guided and radiated electromagnetic fields

Learning results:
Knowledge of electromagnetic wave transmission, both guided and radiated.
The student knows how to compute the fundamental parameters of a communication system, understands the concept of signal to noise ratio and knows how to compute it.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>13,0</td>
<td>8.67</td>
</tr>
<tr>
<td>Hours large group</td>
<td>52,0</td>
<td>34.67</td>
</tr>
<tr>
<td>Self study</td>
<td>85,0</td>
<td>56.67</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

<table>
<thead>
<tr>
<th>Theme 1. Introduction and basic concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Electric energy and power; Circuits in Sinusoidal Steady State; Units and logarithmic magnitudes (dB and Neper)</td>
</tr>
<tr>
<td>Related activities: Laboratory practice 1</td>
</tr>
<tr>
<td>Full-or-part-time: 12h</td>
</tr>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 6h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theme 2. Transmission lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related activities: Laboratory practices 2 and 3</td>
</tr>
<tr>
<td>Full-or-part-time: 44h</td>
</tr>
<tr>
<td>Theory classes: 16h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Self study : 24h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theme 3. Impedance measurement and matching networks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Polar representation of the reflection coefficient. Impedance measurement. Matching networks: discrete element networks, quarter wavelength transformers, transmission line section+stub.</td>
</tr>
<tr>
<td>Related activities: Laboratory practice 4</td>
</tr>
<tr>
<td>Full-or-part-time: 14h</td>
</tr>
<tr>
<td>Theory classes: 8h</td>
</tr>
<tr>
<td>Self study : 6h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theme 4. Theory of guided waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Transversal and axial fields. Propagation modes, cutoff frequency, group and phase velocity, dispersion. The fundamental mode in the rectangular waveguide: Cutoff frequency, guide wavelength, dispersion, power, mode impedance. Standing waves, equivalent transmission line.</td>
</tr>
<tr>
<td>Related activities: Laboratory practice 4</td>
</tr>
<tr>
<td>Full-or-part-time: 20h</td>
</tr>
<tr>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Self study : 12h</td>
</tr>
</tbody>
</table>
Theme 6. Antenna fundamentals

Description:
Basic concepts: power and polarization of plane waves, basic antenna configurations, the directivity concept, spherical coordinates and solid angle. Transmission antenna parameters: Circuit model, radiated power, radiated power density, radiation intensity, radiation diagram, directivity, equivalent solid angle. Reception antenna parameters: circuit model, effective area, effective length. Noise in reception: antenna temperature, equivalent noise temperature, noise to signal ratio (NSR).

Related activities:
Laboratory Practice 5

Full-or-part-time: 46h
Theory classes: 18h
Laboratory classes: 2h
Self study: 26h

GRADING SYSTEM
- Final exam: 60%
- Continuous assessment: 25%
- Laboratory: 15%
Laboratory practices are not reevaluable
Two generic skills are evaluated within this subject:
- Third language (low level)
- Student capability to undertake experimental work and handle laboratory instruments

EXAMINATION RULES.
Calculator: In order to undertaken the tests and exams within this subject, a calculator that operates complex numbers is required. Programmable devices, cameras and any wireless device are strictly forbidden during tests and exams.

BIBLIOGRAPHY

Basic:

Complementary: