230019 - DGD - Digital Design

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2019

Degree:
BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)

ECTS credits: 6

Teaching languages: Catalan

Teaching staff
Coordinator: Pons Nin, Joan
Mateo Peña, Diego

Others: Altet, Josep
Bardés, Daniel
Bermejo, Sandra
Calderer, Josep
Chávez, Juan Antonio
Garcies, Pau
Martín, Isidro
Mateo, Diego
Pons, Joan
Puigdollers, Joaquim

Prior skills
Basic analysis of electronic circuits.
Basic knowledge of electronic devices and, in particular, the MOS transistor.

Requirements
Electronics Fundamentals
Linear Circuits

Degree competences to which the subject contributes

Generical:
12 CPE N2. They will be able to identify, formulate and solve engineering problems in the ICC field and will know how to develop a method for analysing and solving problems that is systematic, critical and creative.
230019 - DGD - Digital Design

Teaching methodology
Lectures and application classes
Laboratory classes
Group work (distance)
Individual work (distance)
Exercises
Short answer tests (Control)
Long answer tests (Final Exam)
Laboratory work

Learning objectives of the subject
The student must be able to analyze, design and experimentally verify combinational and sequential digital subsystems. This course introduces and uses the hardware description language VHDL. It also includes an introduction to CMOS logic circuits, an introduction and utilization of programmable logic devices and an introduction to complex digital systems.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 39h</th>
<th>26.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>26h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.33%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>85h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56.67%</td>
</tr>
</tbody>
</table>
Content

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>Learning time</th>
<th>Theory classes</th>
<th>Laboratory classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1. Introduction to digital design</td>
<td>The digital abstraction, systems and digital signals, behavior vs. structure, hierarchical design. Logic functions and Boolean algebra. Number systems and codes. Under the digital abstraction: power, delay, power consumption, logic levels and high impedance.</td>
<td>17h</td>
<td>7h</td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>Module 2. Combinational design</td>
<td>SdP and PdS canonic design. Simplification of logic functions. Combinational design based on logic gates and on standard combinational modules. Multiplexers, decoders, adders, comparators, etc.</td>
<td>30h</td>
<td>10h</td>
<td>2h</td>
<td>18h</td>
</tr>
<tr>
<td>Module 3. Combinational design with VHDL</td>
<td>History and basic features of HDLs, methodologies and design tools. Basic elements: data types, objects, operators. Units Description: entities, architectures, packages and libraries. Concurrent assignments, conditional assignments and selections. Processes and sequential statements. Declaration and instantiation of components.</td>
<td>24h</td>
<td>6h</td>
<td>4h</td>
<td>14h</td>
</tr>
<tr>
<td>Module 4. Sequential design</td>
<td>Asynchronous and synchronous sequential systems, time behavior. Latches and flip-flops. Analysis and synthesis of synchronous state machines. Sequential modular design, registers and counters. Sequential design with VHDL. Time performance: output delay, hold time, setup time, skews, maximum frequencies, clock and reset signal managing. Algorithmic machines, data unit and control unit.</td>
<td>55h</td>
<td>15h</td>
<td>10h</td>
<td>30h</td>
</tr>
</tbody>
</table>
Qualification system

Final grade based on the respective qualifications of the theory (60%) and the laboratory (40%) parts. The theory mark consists of 60% from the final theory exam and 40% from continuous assessment: exams, small works, delivery of problems or other activities done during the course. The laboratory mark is obtained from the laboratory work done during the course and from the final lab exam.

The re-evaluation of the course involves having to do the final exam again, which includes theory and laboratory parts. Grades earned replace the previous ones. Laboratory work and continuous assessment are not re-avaliable.

This course will assess the generic skill:
- Ability to identify, formulate and solve engineering problems (Intermediate Level)

Regulations for carrying out activities

During the exams it is not allowed to use wireless devices (mobile phones, laptops, tablets, etc..) nor programmable calculators. It is also necessary to provide some identification document (ID card, passport, etc.)

Bibliography

Basic:

Harris, S.L; Money, D. Digital design and computer architecture. Waltham, MA: Morgan Kaufmann, 2016. ISBN 9780128000564.

Others resources:

Computer material

Quartus II Web edition