230031 - SEP - Programmable Electronic Systems

Degree competences to which the subject contributes

Generical:
2. ABILITY TO IDENTIFY, FORMULATE AND SOLVE ENGINEERING PROBLEMS Level 3. To identify and model complex systems. To identify methods and tools appropriate to pose the equations and descriptions associated with the models and to solve them. To carry out qualitative analysis and approaches. To determine the uncertainty of the results. To formulate hypotheses and experimental methods to validate them. To set up and manage undertakings. To identify major components and establish priorities. To develop critical thinking.

Transversal:
1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

Teaching methodology

Lectures
Laboratory classes
Teamwork (unattended)
Individual work (unattended)
Short answer tests (Control)
Long answers test (Final exam)
Laboratory assignments

Learning objectives of the subject

Programming, analysis and design of microprocessor / microcontroller based systems.
Design of digital systems with programmable logic devices.
Increase the knowledge and use of the VHDL hardware description language.

Learning results:

Ability to design, evaluate and implement medium complexity digital systems using programmable logic devices (PLDs, CPLDs, FPGAs).
Ability to describe medium complexity digital systems using the VHDL hardware description language.
230031 - SEP - Programmable Electronic Systems

Understanding of the features of commercial programmable logic devices (PLDs, CPLDs, FPGAs).
Ability to design, evaluate and implement digital systems based on microprocessors and microcontrollers.
Ability to program, evaluate and debug applications on systems based on microprocessors and microcontrollers.
Experience in programming and debugging applications on microcontrollers, as well as using their usual interface signals.

Application of the acquired competences to the autonomous completion of a task. Identification of the need for a continuous learning and development of a specific strategy to carry it out.
Identification and modeling of complex systems. Development of qualitative analysis and approximations, establishing the uncertainty of the results. Posing hypotheses and experimental methods to validate them. Identification of major components and definition of tradeoffs and priorities.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 188h</th>
<th>Hours large group:</th>
<th>39h</th>
<th>20.74%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>39h</td>
<td>20.74%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>110h</td>
<td>58.51%</td>
</tr>
</tbody>
</table>
Content

Module 1. Structure and programming model of a microprocessor

Learning time: 21h 41m
- Theory classes: 8h
- Self study: 13h 41m

Description:
1.1. Components of a microprocessor system
1.2. Internal structure of registers, stack and queues
1.3. Addressing modes
1.4. Subroutines

Module 2. Memory subsystem

Learning time: 16h 15m
- Theory classes: 6h
- Self study: 10h 15m

Description:
2.1. Structure and timing of microprocessor bus
2.2. Memory mapping and decoding
2.3. Memory types (SRAM, DRAM, SDRAM, Flash, EEPROM)
2.4. Cache memory
2.5. Virtual memory

Module 3. Input/output subsystem

Learning time: 16h 15m
- Theory classes: 6h
- Self study: 10h 15m

Description:
3.1. Access to input/output devices
3.2. Interrupts
3.3. Serial and parallel interfaces

Module 4. Practical aspects of digital design

Learning time: 24h 24m
- Theory classes: 9h
- Self study: 15h 24m

Description:
4.1. Programmable devices
4.2. Timing features of digital primitives
4.3. Synchronization
4.4. Synchronous design techniques
4.5. Area and timing considerations for the synthesis of digital systems
Module 5. Design of control subsystems

Learning time: 16h 15m
Theory classes: 6h
Self study: 10h 15m

Description:
- 5.1. Principles of algorithmic design
- 5.2. Coding
- 5.3. Timing and frequency synthesis subsystems

Module 6. Design of data processing subsystems

Learning time: 16h 15m
Theory classes: 6h
Self study: 10h 15m

Description:
- 6.1. Multipliers
- 6.2. ALUs

Laboratory

Learning time: 82h 30m
Laboratory classes: 41h 15m
Self study: 41h 15m

Description:
- Introduction to the development tools for microcontrollers.
- Analysis and programming of systems based on microcontrollers.
- Introduction to the CAD tools for the design, simulation and synthesis of digital systems.
- Analysis and design of digital systems using FPGAs.

Planning of activities

- **(ENG) Proves de resposta curta (Control)**
- **(ENG) Pràctica de laboratori**
- **(ENG) Proves de resposta llarga (Examen Final)**
230031 - SEP - Programmable Electronic Systems

Qualification system
- 50 % Final exam
- 30 % Laboratory assignments
- 20 % Control

In this course the following generic competences will be assessed:
- Autonomous learning (High level)
- Capability of identifying, formulating and solving engineering problems (High level)

Bibliography

Basic: