230082 - FDE - Fundamentals of Electronics

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2018
Degree: BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Teaching unit Compulsory)
ECTS credits: 7 Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Voz Sanchez, Cristobal
Others: Altet Sanahujes, Josep
 Bermejo Broto, Alexandra
 Fernandez Chimeno, Mireya
 Lopez Gonzalez, Juan Miguel
 Martin Garcia, Isidro
 Molinas Mata, Pau
 Orpella Garcia, Alberto
 Ortega Villasclaras, Pablo Rafael
 Puigdollers Gonzalez, Joaquin
 Rodriguez Martinez, Angel
 Rubio Sola, Jose Antonio
 Tous Muntaner, Ignacio
 Vargas Drechsler, Manuel Agustin

Degree competences to which the subject contributes

Generical:
10 ECI N1. They will have acquired knowledge related to experiments and laboratory instruments and will be competent in a laboratory environment in the ICC field. They will know how to use the instruments and tools of telecommunications and electronic engineering and how to interpret manuals and specifications. They will be able to evaluate the errors and limitations associated with simulation measures and results.

Teaching methodology

Theoretical classes
Laboratory classes
Cooperative work (out of classrooms)
Individual work (out of classrooms)
Short answer controls (Test)
Long answer controls
Long answer controls (Final examination)
Laboratory
Laboratory examination

Learning objectives of the subject
Study load

<table>
<thead>
<tr>
<th>Total learning time: 175h</th>
<th>Hours large group:</th>
<th>52h</th>
<th>29.71%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group:</td>
<td>26h</td>
<td>14.86%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>97h</td>
<td>55.43%</td>
</tr>
</tbody>
</table>
Content

Analysis of electric circuits

Learning time: 50h
- Theory classes: 20h
- Self study: 30h

Description:

The capacitor and the inductor

Learning time: 12h
- Theory classes: 5h
- Self study: 7h

Description:

The junction diode and its applications

Learning time: 25h
- Theory classes: 10h
- Self study: 15h

Description:

The transistor and the signal amplifier

Learning time: 25h
- Theory classes: 10h
- Self study: 15h

Description:
Laboratory of Electronic

<table>
<thead>
<tr>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Presentation of the Laboratory</td>
</tr>
<tr>
<td>2. The power source and the digital multimeter</td>
</tr>
<tr>
<td>3. Electric measurements in DC</td>
</tr>
<tr>
<td>4. The oscilloscope and function generator</td>
</tr>
<tr>
<td>5. Introduction to the operational amplifier</td>
</tr>
<tr>
<td>6. Introduction to RC circuits</td>
</tr>
<tr>
<td>7. Control of electronic instrumentation</td>
</tr>
<tr>
<td>8. Fabrication of a wave square generator</td>
</tr>
<tr>
<td>9. Electric characteristic of a diode, LED and Zener</td>
</tr>
<tr>
<td>10. The transformer, rectifying circuits and capacitor filter.</td>
</tr>
<tr>
<td>11. The bipolar junction transistor: DC analysis</td>
</tr>
<tr>
<td>12. Signal amplification with a bipolar junction transistor</td>
</tr>
</tbody>
</table>

Learning time: 60h
- Laboratory classes: 26h
- Self study: 34h

Qualification system

Laboratory: 20% (20% practice, 40% instrumentation exam, 40% laboratory exam)
Midterms: 40%
Final exam: 40%

Bibliography

Basic:

Complementary:
