Course guide
230090 - ONELE - Electromagnetics Waves

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.

Degree: BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Compulsory subject).

Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/responsables-assignatura

Others: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/professorat-assignat-idioma

PRIOR SKILLS

Ability to manipulate high-level mathematical equations.
Geometric visualization capacity.
Ability to understand abstract concepts.

Familiarity in the following topics: Vector Fields, Vector Analysis, Surface and Volume Integrals, Trigonometry, Complex Numbers.

REQUIREMENTS

ELECTROMAGNETISM - Precorequisite

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Generical:
12 CPE N2. They will be able to identify, formulate and solve engineering problems in the ICC field and will know how to develop a method for analysing and solving problems that is systematic, critical and creative.

TEACHING METHODOLOGY

Most of lessons will be given on the blackboard, and others with multimedia material.

LEARNING OBJECTIVES OF THE SUBJECT

It is intended that students acquire a solid basis, both visual and mathematical, of the phenomena associated with the propagation of electromagnetic waves in free space, of reflection and transmission on separating surfaces of different media, and of their propagation through waveguides, optical fibers and transmission lines.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>52.0</td>
<td>34.67</td>
</tr>
<tr>
<td>Self study</td>
<td>85.0</td>
<td>56.67</td>
</tr>
<tr>
<td>Hours small group</td>
<td>13.0</td>
<td>8.67</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1. Electromagnetics waves in free space

Description:
Wave equation. Plane and spherical waves. Waves in sinusoidal steady state.

Related activities:
Laboratory, P1

Full-or-part-time: 1h
Theory classes: 1h

2. Wave polarization

Description:
Polarization types. Devices used to control and measure polarization.

Related activities:
Laboratory, P2

Full-or-part-time: 6h
Theory classes: 6h

3. Incidence of plane waves

Description:

Related activities:
Laboratory, P3 and P4

Full-or-part-time: 12h
Theory classes: 12h
4. Waveguides. Types and characteristics. Transmission lines

Description:

Related activities:
Laboratory, P5

Full-or-part-time: 16h
Theory classes: 16h

5. Foundations of radiation

Description:
Wave equation with charge and current densities. Electric potential and magnetic vector A. Radiating dipoles. Arrays of dipoles

Full-or-part-time: 12h
Theory classes: 12h

GRADING SYSTEM

Partial exam: 30% (cannot be retaken)
Laboratory and work summaries: 10% (cannot be retaken)
Final exam: 60%

BIBLIOGRAPHY

Basic: