Learning objectives of the subject

- To acquire a methodology for fast and efficient implementation of DSP algorithms on FPGAs.
- To decide the partition between software and hardware in order to obtain the higher efficiency.
- To design hardware considering the tradeoff between area, performance and power consumption, depending on the application.
- To use of CAE tools available for mapping DSP algorithms on FPGAs.
- To implement physical DSP algorithms on real FPGAs.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 26h</th>
<th>17.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours small group: 26h</td>
<td>17.33%</td>
</tr>
<tr>
<td></td>
<td>Self study: 98h</td>
<td>65.33%</td>
</tr>
</tbody>
</table>
1. Introduction to real-time digital signal processing (DSP)

Description:
The DSP algorithms requirements as well as demanded resources for real-time performance are analyzed. Several DSP algorithms are reviewed, with emphasis on image processing.

Learning time: 12h
Theory classes: 6h
Self study: 6h

2. DSP algorithm description with high level languages

Description:
Matlab/Simulink environment for DSP algorithm description.

Learning time: 18h
Theory classes: 4h
Laboratory classes: 4h
Self study: 10h

3. FPGA Architectures

Description:
Introduction to the main FPGA architectures with emphasis on DSP blocks and IP cores. Introduction to the Xilinx development environment.

Learning time: 24h
Theory classes: 6h
Laboratory classes: 4h
Self study: 14h

4. Algorithm mapping for real-time digital signal processing (DSP)

Description:
Introduction to the DSP system hardware implementation concepts. Implementation and transformation forms: serial and parallel processing (in space and time), retiming, etc. Analysis of DSP algorithm mapping on programmable hardware and area/delay/power consumption tradeoffs. Study of the finite precision effect. Fixed and floating point. Automatic generation tools (System Generator).

Learning time: 42h
Theory classes: 10h
Laboratory classes: 8h
Self study: 24h
5. Design project on development boards

Description:
Design of a project on advanced development boards of Xilinx 7 family or Zynq.

Learning time: 54h
- Laboratory classes: 10h
- Self study: 44h

Planning of activities

LABORATORY

Description:
Labs on DSP algorithm description using Matlab/Simulink, mapping and implementation on FPGA with ISE and System Generator. Design project on real-time processing, with emphasis on image processing.

SHORT ANSWER TEST (CONTROL)

Description:
Mid-term exam.

EXTENDED ANSWER TEST (FINAL EXAMINATION)

Description:
Final exam.

Qualification system

- Final examination: 20%
- Partial examinations and controls: 10%
- Laboratory assessments: 70%

Bibliography

Basic:

Others resources:
- Matlab, Simulink, System Generator and ISE User guides.