Course guides
230153 - PX - Planning Communications Networks

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 744 - ENTEL - Department of Network Engineering.

Degree:
- BACHELOR’S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Optional subject).
- BACHELOR’S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Optional subject).
- BACHELOR’S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Optional subject).

Academic year: 2019 ECTS Credits: 6.0 Languages: Spanish

LECTURER

Coordinating lecturer: MARCOS POSTIGO BOIX
Others: JOSÉ LUIS MELÚS MORENO
 MARCOS POSTIGO BOIX

PRIOR SKILLS

Knowledge acquired in: Introduction to Telematic Networks, Analysis and Evaluation of Networks.

TEACHING METHODOLOGY

- Lectures
- Exercises
- Long-answer questions
- Other activities

LEARNING OBJECTIVES OF THE SUBJECT

Planning networks is a complex task. At least two components must be considered. First, the technological aspects involved and second, the economy constraints. The word "networks" is associated with two different terms: the core network and the access network. The last one is everywhere in our lives and today is the most important part of the analysis on networks. Of course, the performance evaluation of each type of networks presents different kinds of tools to tackle on.

In the process of planning networks it is necessary to distinguish two phases: the first one is the design phase and the second one is the operation phase. In the design phase, the designer get the optimal topology of the network in the aim to obtain for a limited budget, for example, the minimum time to transmit packets through the network. But in this process some question are coming up, for example, how to buy the BW for the core or access network? Is it possible to buy this BW in advance? In this case, how much to pay for it?

In the operation phase it is important to monitor the network, what imply to know what type of metrics and measures and in which scenarios should be taken. Thus, the monitoring of the network allows the designer of the network to assign the available resources in an optimal way to match the required services. Some of this services could be for example Data Base access, multimedia web applications, IPTV with Netflix, etc.

Wireless access networks play a fundamental role today. These networks have certain difficulties that can be improved with appropriate technologies. Here, it is described the algorithm DPC (Distributed Power Control) and the advantages of access mechanisms used in WIFI.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>98.0</td>
<td>65.33</td>
</tr>
<tr>
<td>Hours large group</td>
<td>52.0</td>
<td>34.67</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1. Core Network. Technological design aspects

Description:
- Capacity assignment for links. Minimax criterium.
- Quality parameters: monitoring and operation.
- Network reliability. Ford-Fulkerson algorithm.

2. Economic constraints in the design phase

Description:
- Decisions in uncertain scenarios. Options and futures.
- Case study: Pricing spectrum options.

3. Access Network. Technological design aspects

Description:
- DPC (Distributed Power Control) Algorithm
- Access Network Evaluation using WIFI

4. Performance engineering in telematics systems. Operational analysis

Description:
- Evaluation metrics.
- Evaluation tools:
 - Queuing Networks.
 - Markov Models
 - Mean Value Analysis Method
- Application cases: Web applications, Data base access, etc.
ACTIVITIES

First Part Exam

Description:
Exercises.

Full-or-part-time: 2 h
Theory classes: 2h

Second Part Exam

Description:
Exercises.

Full-or-part-time: 2 h
Theory classes: 2h

GRADING SYSTEM

- Lessons 1, 2 and 3: Exam 30%, Continuous Assessment 20%
- Lesson 4: Exam 30%, Continuous Assessment 20%

BIBLIOGRAPHY

Basic:

Complementary: