230319 - SMBC - Low Cost Measurement Systems

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2018
Degree: BACHELOR'S DEGREE IN TELECOMMUNICATIONS SCIENCE AND TECHNOLOGY (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN AUDIOVISUAL SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN ELECTRONIC SYSTEMS ENGINEERING (Syllabus 2009). (Teaching unit Optional)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS SYSTEMS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN NETWORK ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR'S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Teaching unit Optional)
ECTS credits: 2
Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: Vargas Drechsler, Manuel
Others: Torrents Dolz, Josep Maria
Vargas Drechsler, Manuel

Opening hours
Timetable: The already scheduled.

Prior skills
A little bit of English.

Requirements
Curiosity.

Degree competences to which the subject contributes

Generical:
10 ECI. They will have acquired knowledge related to experiments and laboratory instruments and will be competent in a laboratory environment in the ICC field. They will know how to use the instruments and tools of telecommunications and electronic engineering and how to interpret manuals and specifications. They will be able to evaluate the errors and limitations associated with simulation measures and results.
08 CRPE. ABILITY TO IDENTIFY, FORMULATE AND SOLVE ENGINEERING PROBLEMS. To plan and solve engineering problems in the ICT with initiative, making decisions and with creativity. To develop a method of analysis and problem solving in a systematic and creative way.

Transversal:
04 COE. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of specialization.
230319 - SMBC - Low Cost Measurement Systems

Teaching methodology

The CDIO methodology applied to low cost measurement systems will be used. The CDIO methodology consists of conceiving, designing, implementing and operating systems, in this case based on the sound system of the personal computer.

Learning objectives of the subject

Introduce students to low cost measurement systems.
Introduce students to hardware, software, and free cultural works.
Introduce students to LabVIEW programming environment.
Introduce students to CDIO methodology.
Introduce students to minimize costs.
Introduce students to reporting.
At the end of the seminar students will be able to program and configure the PC to make a low cost measurement system.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 50h</th>
<th>Hours small group:</th>
<th>20h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study:</td>
<td>30h</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
An introduction to Low cost measurement systems

Description:
An introduction to low cost measurement systems. Measurement systems offer low cost alternative to traditional systems of measurement. We will study the advantages and disadvantages of low cost measurement systems compared to traditional measurement systems. We will list a few low cost systems. In future lectures, we will turn the PC into a measurement system.

Learning time: 2h
Laboratory classes: 2h

Hardware: PC’s sound card

Description:
Hardware: PC’s sound card

Learning time: 2h
Laboratory classes: 2h

Software: LabVIEW

Description:
Software: LabVIEW

Related activities:
License

Learning time: 4h
Laboratory classes: 4h

Open source hard&soft

Description:
Open source hard&soft

Learning time: 0h 30m
Laboratory classes: 0h 30m

Examples on soundcard

Description:
Examples on soundcard

Learning time: 6h
Laboratory classes: 6h
Uncertainty evaluation

<table>
<thead>
<tr>
<th>Learning time: 0h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 0h 30m</td>
</tr>
</tbody>
</table>

Description:
Measurement uncertainty evaluation

Reporting

<table>
<thead>
<tr>
<th>Learning time: 4h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
</tbody>
</table>

Description:
Reporting

CDIO on low cost system

<table>
<thead>
<tr>
<th>Learning time: 1h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 1h</td>
</tr>
</tbody>
</table>

Description:
CDIO on low cost system

Planning of activities

<table>
<thead>
<tr>
<th>Hours: 1h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory classes: 1h</td>
</tr>
</tbody>
</table>

Qualification system

Evaluation of the ability to measure in an electronic laboratory.

Regulations for carrying out activities

Continuous evaluation. If additional tests are scheduled, they will be in the lab, alone or in small groups.
Bibliography

Basic:

Complementary:

Others resources:

Computer material

LabVIEW

Laboratory C5S101