Degree competences to which the subject contributes

- **Specific:**
 1. Knowledge of the chemistry laws. Knowledge of the main chemical methods of producing materials and nanomaterials. Ability to conduct and analyze basic chemical reactions.

- **General:**
 4. ABILITY TO IDENTIFY, FORMULATE, AND SOLVE PHYSICAL ENGINEERING PROBLEMS. Planning and solving physical engineering problems with initiative, making decisions and with creativity. Developing methods of analysis and problem solving in a systematic and creative way.

- **Transversal:**
 2. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 1. Planning oral communication, answering questions properly and writing straightforward texts that are spelt correctly and are grammatically coherent.
 3. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
 1. SUSTAINABILITY AND SOCIAL COMMITMENT - Level 1. Analyzing the world’s situation critically and systemically, while taking an interdisciplinary approach to sustainability and adhering to the principles of sustainable human development. Recognizing the social and environmental implications of a particular professional activity.

Learning objectives of the subject

- Understand and apply the basic concepts of Chemistry related to the atomic and molecular structure and the properties of matter.
- Apply the principles of chemical transformations to the knowledge and calculation of transformed reactants and products obtained.
- Justify the applications of common inorganic compounds.
230453 - QI - Inorganic Chemistry

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 65h</th>
<th>43.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 85h</td>
<td>56.67%</td>
</tr>
</tbody>
</table>

Total learning time: 150h
Content

Utility of the periodic table

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 28h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 12h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

The covalent bond

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 20h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 10h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

The metallic bond

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 16h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 8h</td>
</tr>
<tr>
<td></td>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

The ionic bond

<table>
<thead>
<tr>
<th>Description</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 5h</td>
</tr>
</tbody>
</table>
Chemical reactions

Learning time: 24h
- Theory classes: 8h
- Guided activities: 8h
- Self study: 8h

Description:

Acids and bases

Learning time: 20h
- Theory classes: 8h
- Guided activities: 4h
- Self study: 8h

Description:

Oxidation and reduction

Learning time: 20h
- Theory classes: 8h
- Guided activities: 4h
- Self study: 8h

Description:

Organometallic compounds

Learning time: 12h
- Theory classes: 6h
- Self study: 6h

Description:
The organometallic bond. Types of organometallic compounds.

Qualification system

Qualification will include a final exam (EF) and continuous evaluation including a mid-semester exam (EP) and the participation of the student in seminar classes (P). The final qualification will be calculated as follows: max{EF, 0.65*EF + 0.30*EP + 0.05*P}
Bibliography

Basic:

Complementary: