Course guide

230461 - MM2 - Mathematical Methods 2

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 749 - MAT - Department of Mathematics.
Degree: BACHELOR'S DEGREE IN ENGINEERING PHYSICS (Syllabus 2011). (Compulsory subject).
Academic year: 2022 ECTS Credits: 6.0 Languages: Catalan

LECTURER

Coordinating lecturer: Consultar aquí / See here:
https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/responsables-assignatura
Others: Consultar aquí / See here:
https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/professorat-assignat-idioma

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
3. Ability to solve math problems that may arise in engineering. Ability to apply knowledge about linear algebra, geometry, differential geometry, differential and integral calculus, ordinary and partial differential equations, probability and statistics.

Generical:
2. ABILITY TO IDENTIFY, FORMULATE, AND SOLVE PHYSICAL ENGINEERING PROBLEMS. Planning and solving physical engineering problems with initiative, making decisions and with creativity. Developing methods of analysis and problem solving in a systematic and creative way.

Transversal:
1. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.
4. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

TEACHING METHODOLOGY

Lectures (3 sessions per week): the instructor presents the fundamental concepts and some relevant proofs, intermingled with key examples and the solution of representative problems.
Recitations (2 sessions per week): the students review the fundamental concepts and solve some problems, under the guidance of the instructor.

LEARNING OBJECTIVES OF THE SUBJECT

To acquire the theoretic foundations and the techniques associated to the mathematical methods of physics, such as function spaces, Fourier analysis, linear differential operators, the separation of variables method, and complex analysis.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>65.0</td>
<td>43.33</td>
</tr>
<tr>
<td>Self study</td>
<td>85.0</td>
<td>56.67</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Complex analysis

Description:
Functions of a complex variable are introduced, and holomorphic functions are defined. Integration on paths in the complex plane is studied, and the main integral formulas are presented, as well as Laurent series expansions. The obtained results are applied to the computation of improper integrals.

Specific objectives:
- Integration on paths in the complex plane. Cauchy’s theorem. Cauchy’s integral formulas.
- Theorem of the residues. Application to the computation of some improper integrals.

Full-or-part-time: 35h 30m

Theory classes: 9h
Practical classes: 5h
Guided activities: 0h 30m
Self study: 21h

Fourier analysis

Description:
Banach and Hilbert abstract spaces are introduced, and the special case of square-integrable functions is considered. In this space, families of orthogonal functions and their associated Fourier series are defined. In particular, the trigonometric and complex exponential families are presented, and the main convergence results for them are stated. Finally, the Fourier transform and some of its properties are studied.

Some applications of Fourier analysis, such as DFT or Fraunhofer diffraction, will be addressed in the homework.

Specific objectives:
- Sets of orthogonal functions. Fourier series. trigonometric and exponential families.
- Convergence theorems: Bessel, Parseval, Dirichlet.

Full-or-part-time: 46h 30m

Theory classes: 11h
Practical classes: 7h
Guided activities: 0h 30m
Self study: 28h
Linear differential operators and Green functions

Description:
The concept of adjoint operator associated to a differential operator is presented, and the boundary conditions that render an operator self-adjoint are discussed. Green functions and Sturm-Liouville problems are also defined.

Specific objectives:
- Linear differential operators.
- Adjoint operator. Hermitic and self-adjoint operators.
- Spectrum of a self-adjoint operator.

Full-or-part-time: 29h 30m
Theory classes: 9h
Practical classes: 6h
Guided activities: 0h 30m
Self study: 14h

Partial differential equations

Description:
The classification of second order linear PDEs is given, and some of the properties related to well-posedness are discussed in physical terms. Separation of variables techniques are presented.

Specific objectives:
- Classification of linear second order PDEs. Boundary and initial conditions.
- The method of characteristics for first-order EDP and for hyperbolic equations.
- The wave equation. D'alembert solution, causal Green function and separation of variables.
- Potential theory. Unicity of solutions, separation of variables, eigenfunctions and Green functions. Electrostatic potential.

Full-or-part-time: 26h
Theory classes: 7h
Practical classes: 4h
Guided activities: 1h
Self study: 14h

GRADING SYSTEM

The grading of this course is based mainly on written examinations where the students will solve some problems, but some homework will also be taken into account.

Final grade: maximum of \{PF, 90% PF + 10% PNP, 65% PF + 25% PP + 10% PNP\}, where
PF final examination, covering all the material
PP partial examination, covering the first chapters
PNP homework

In order to assign the Honors ("Matrícula d'Honor") qualification, the ordering of grades computed with 65% PF + 25% PP + 10% PNP will be used.
EXAMINATION RULES.

The written exams will be closed-book, but a specified number of sheets of notes will be allowed for each of them, as well as the computer support that the instructors deem necessary.

Homework norms will be communicated at the beginning of the course.

BIBLIOGRAPHY

Basic:

Complementary: