230471 - ELF - Physical Electronics

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2018
Degree: BACHELOR'S DEGREE IN ENGINEERING PHYSICS (Syllabus 2011). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Degree competences to which the subject contributes

Specific:
1. Understanding the physics of semiconductors. Knowledge of microelectronic devices and their applications in nanotechnology, biophysics, photonics and communications. Ability to analyze the performance of electronic devices and integrated circuits.

General:
4. ABILITY TO IDENTIFY, FORMULATE, AND SOLVE PHYSICAL ENGINEERING PROBLEMS. Planning and solving physical engineering problems with initiative, making decisions and with creativity. Developing methods of analysis and problem solving in a systematic and creative way.
5. They will have acquired knowledge related to experiments and laboratory instruments and will be competent in a laboratory environment in the ICC field. They will know how to use the instruments and tools of telecommunications and electronic engineering and how to interpret manuals and specifications. They will be able to evaluate the errors and limitations associated with simulation measures and results.

Transversal:
1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.
2. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.
3. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

Teaching methodology

There will be three theoretical and two practical weekly sessions.

Learning objectives of the subject

Undrstand the basics of semiconductor devices.
To know the basic principles and to be able to analyze cuantitaviley their behaviour.
Yo have the tools allowing to understand future devices.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>65h</td>
<td>85h</td>
</tr>
<tr>
<td></td>
<td>43.33%</td>
<td>56.67%</td>
</tr>
</tbody>
</table>
1. Semiconductor physics.

<table>
<thead>
<tr>
<th>Learning time: 37h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 9h 45m</td>
</tr>
<tr>
<td>Practical classes: 6h</td>
</tr>
<tr>
<td>Self study (distance learning): 21h</td>
</tr>
<tr>
<td>Guided activities: 0h 45m</td>
</tr>
</tbody>
</table>

Description:

1.2. Concentration of electrons and holes. Effective density of states. Fermi level.
1.5. Generation and recombination of carriers. Lifetime. Quasi-Fermi levels.

2. PN junction diode

<table>
<thead>
<tr>
<th>Learning time: 37h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 9h 45m</td>
</tr>
<tr>
<td>Practical classes: 6h</td>
</tr>
<tr>
<td>Self study (distance learning): 21h</td>
</tr>
<tr>
<td>Guided activities: 0h 45m</td>
</tr>
</tbody>
</table>

Description:

2.2. The pn junction under bias. Current-voltage characteristics of ideal diode.
2.4. Dynamic resistance of the diode. Small-signal model.
2.5. Metal-semiconductor junctions. Ohmic contact and Schottky diode.
2.6. Introduction to optoelectronic devices: light emitting diode LED, laser diode, photodiode and solar cell.
3. Field effect transistor

Description:

3.1. Classification of field effect transistors. The MOSFET transistor.
3.2. Electrostatic analysis of the MOS structure. Flat-band voltage and threshold voltage. MOS Capacity.
3.3. Static characteristics of MOSFET transistor.
3.4. Modes: cut, linear, and saturation.
3.5. Substrate effect. Features sub-threshold.
3.6. Equivalent circuits.
3.7. Scaling the MOSFET and hot electron effects.
3.8. Effects of short channel.
3.9. Example of digital implementation. CMOS inverter logic.

Learning time: 37h 30m

- Theory classes: 9h 45m
- Practical classes: 6h
- Laboratory classes: 0h 45m
- Work experience: 21h

4. Bipolar junction transistor

Description:

4.1. Device structure. Transistor effect.
4.3. Parameters: Emitter injection efficiency, transport factor, gain.
4.4. Non ideal effects: Base width modulation, high injection, breakdown.
4.5. Small signal equivalent circuit Pi model.
4.6. Amplifier circuit using bipolar transistor.

Learning time: 37h 30m

- Theory classes: 9h 45m
- Practical classes: 6h
- Laboratory classes: 0h 45m
- Work experience: 21h

Qualification system

There will be a final exam (EF) and mid-semester exam (EP). The students' participation in class of problems (P) and work to be done in groups will be also taken into account.

The final mark results from \(\max \{EF, 0.65 \times EF + 0.30 \times EP + 0.05 \times P\} \).

The work will assess generical skills.
Bibliography

Basic:

