Course guide
230478 - FOT - Photonics

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 748 - FIS - Department of Physics.

Degree: BACHELOR’S DEGREE IN ENGINEERING PHYSICS (Syllabus 2011). (Compulsory subject).

Academic year: 2022 ECTS Credits: 6.0 Languages: English

LECTURER

Coordinating lecturer: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/responsables-assignatura

Others: Consultar aquí / See here: https://telecos.upc.edu/ca/estudis/curs-actual/professorat-responsables-coordinadors/professorat-assignat-idioma

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
1. Knowledge and understanding of the interaction between radiation and matter in photonic systems. Knowledge of photonic devices and ability for using them. Knowledge of applications in nanotechnology, materials science, communications and biophysics.

Generical:
2. ABILITY TO IDENTIFY, FORMULATE, AND SOLVE PHYSICAL ENGINEERING PROBLEMS. Planning and solving physical engineering problems with initiative, making decisions and with creativity. Developing methods of analysis and problem solving in a systematic and creative way.

Transversal:
1. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
3. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.
4. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.
5. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

TEACHING METHODOLOGY

There will be three theoretical and two practical weekly sessions. The theoretical lectures will be devoted to a careful presentation of the basic concepts and the main results which will be illustrated with some examples. The practical sessions will be devoted to the solution of a variety of exercises and problems.
LEARNING OBJECTIVES OF THE SUBJECT

After attending the course the student will be able to:
- Know the main properties of light and the basic concepts involved in its characterization
- Identify different aspects concerning the emission of radiation and light-matter interaction
- Apply Maxwell’s equations for the resolution of light propagation problems, in particular those related with interference, diffraction and dispersion
- Describe the light propagation in anisotropic and structured media
- Identify different aspects of radiation detection
- Apply the studied concepts to the field of photonics
- Identify and describe the most relevant applications in the field of photonics

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>85,0</td>
<td>56.67</td>
</tr>
<tr>
<td>Hours large group</td>
<td>65,0</td>
<td>43.33</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Part I: FUNDAMENTALS OF PHOTONICS

Full-or-part-time: 132h
Theory classes: 34h
Practical classes: 24h
Self study: 74h

I1 Fundamental properties of light (classical approach)

Description:
I1.1 Historical introduction
I1.2 Basic magnitudes and properties from a classical point of view

Full-or-part-time: 10h
Theory classes: 3h
Practical classes: 2h
Self study: 5h

I2 Basic models and equations

Description:
Basic models for monochromatic beams

Full-or-part-time: 18h
Theory classes: 4h
Practical classes: 4h
Self study: 10h
I3 Generation and emission

Description:
- I3.1 Radiation by a dipole and a set of dipoles
- I3.2 Light-matter interaction models
- I3.3 Light sources

Full-or-part-time: 22h
Theory classes: 6h
Practical classes: 4h
Self study: 12h

I4 Introduction to quantum aspects of light

Description:
- I4.1 Light-Matter interaction from a quantum approach (comparison with classical model):
 - Einstein model
 - Semiclassical theory
- I4.2 Introduction to the quantum theory of light. Photons. Properties
- I4.3 Applications:
 - Momentum of light
 - Lasers

Full-or-part-time: 31h
Theory classes: 10h
Practical classes: 5h
Self study: 16h

I5 Propagation

Description:
- I5.1 Crystal optics
- I5.2 Short pulse propagation. Dispersion
- I5.3 Propagation in free space. Interferences and diffraction

Full-or-part-time: 49h
Theory classes: 12h
Practical classes: 7h
Self study: 30h

I6 Detection

Description:
- I6.1 Temporal characterization of radiation
- I6.2 Spatial characterization of radiation
- I6.3 Spectral characterization of radiation

Full-or-part-time: 10h
Theory classes: 3h
Practical classes: 2h
Self study: 5h
PART II: APPLICATIONS OF PHOTONICS

Description:
II1 Microscopy and image processing
II2 Optical communications
II3 Nanophotonics
II4 Metrology and material treatment
II5 Nonlinear optics
II6 Quantum optics

Full-or-part-time: 10h
Theory classes: 1h
Guided activities: 3h
Self study: 6h

GRADING SYSTEM

The evaluation is obtained from the mark of a first partial exam (EP) at the middle of the semester, a second partial exam at the end of the semester (EP2) and the realization of a proposed task (T)

The final score will follow from: \(\text{NOTA} = 0.4 \times \text{EP} + 0.5 \times \text{EP2} + 0.10 \times \text{T} \)

There is a second evaluation option including an exam of the whole content of the course (EF) and the realization of a proposed task (T)

The final score will follow from: \(\text{NOTA} = 0.90 \times \text{EF} + 0.10 \times \text{T} \)

EXAMINATION RULES.

The students doing the final exam will loose the mark of the first partial

BIBLIOGRAPHY

Basic:

Complementary: