Degree competences to which the subject contributes

Specific:
1. Knowledge and understanding of the interaction between radiation and matter in photonic systems. Knowledge of photonic devices and ability for using them. Knowledge of applications in nanotechnology, materials science, communications and biophysics.

Generic:
2. ABILITY TO IDENTIFY, FORMULATE, AND SOLVE PHYSICAL ENGINEERING PROBLEMS. Planning and solving physical engineering problems with initiative, making decisions and with creativity. Developing methods of analysis and problem solving in a systematic and creative way.

Transversal:
1. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.
2. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.
3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.
4. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

Teaching methodology

There will be three theoretical and two practical weekly sessions. The theoretical lectures will be devoted to a careful presentation of the basic concepts and the main results which will be illustrated with some examples. The practical sessions will be devoted to the solution of a variety of exercises and problems.

Learning objectives of the subject

After attending the course the student will be able to:
- Know the main properties of light and the basic concepts involved in its characterization
- Identify different aspects concerning the emission of radiation and light-matter interaction
- Apply Maxwell’s equations for the resolution of light propagation problems, in particular those related with interference,
Study load

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td></td>
</tr>
<tr>
<td>Hours large group:</td>
<td>65h</td>
<td>43.33%</td>
</tr>
<tr>
<td>Self study:</td>
<td>85h</td>
<td>56.67%</td>
</tr>
</tbody>
</table>

- Describe the light propagation in anisotropic and structured media
- Identify different aspects of radiation detection
- Apply the studied concepts to the field of photonics
- Identify and describe the most relevant applications in the field of photonics
Content

<table>
<thead>
<tr>
<th>Part I: FUNDAMENTALS OF PHOTONICS</th>
<th>Learning time: 132h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 34h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 24h</td>
</tr>
<tr>
<td></td>
<td>Self study: 74h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11 Fundamental properties of light (classical approach)</th>
<th>Learning time: 10h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Self study: 5h</td>
</tr>
</tbody>
</table>

Description:

- I1.1 Historical introduction
- I1.2 Basic magnitudes and properties from a classical point of view

<table>
<thead>
<tr>
<th>12 Basic models and equations</th>
<th>Learning time: 18h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Description:

Basic models for monochromatic beams

<table>
<thead>
<tr>
<th>13 Generation and emission</th>
<th>Learning time: 22h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 6h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Self study: 12h</td>
</tr>
</tbody>
</table>

Description:

- I3.1 Radiation by a dipole and a set of dipoles
- I3.2 Light-matter interaction models
- I3.3 Light sources
14 Introduction to quantum aspects of light

Learning time: 31h
- Theory classes: 10h
- Practical classes: 5h
- Self study: 16h

Description:
- 14.1 Light-Matter interaction from a quantum approach (comparison with classical model):
 - Einstein model
 - Semiclassical theory
- 14.2 Introduction to the quantum theory of light. Photons. Properties
- 14.3 Applications:
 - Momentum of light
 - Lasers

15 Propagation

Learning time: 49h
- Theory classes: 12h
- Practical classes: 7h
- Self study: 30h

Description:
- 15.1 Crystal optics
- 15.2 Short pulse propagation. Dispersion
- 15.3 Propagation in free space. Interferences and diffraction

16 Detection

Learning time: 10h
- Theory classes: 3h
- Practical classes: 2h
- Self study: 5h

Description:
- 16.1 Temporal characterization of radiation
- 16.2 Spatial characterization of radiation
- 16.3 Spectral characterization of radiation
The evaluation is obtained from the mark of a first partial exam (EP) at the middle of the semester, a second partial exam at the end of the semester (EP2) and the realization of a proposed task (T):

\[\text{NOTA} = (0.4 \times \text{EP} + 0.5 \times \text{EP2} + 0.1 \times \text{T}) \]

There is a second evaluation option including an exam of the whole content of the course (EF) and the realization of a proposed task (T):

\[\text{NOTA} = (0.9 \times \text{EF} + 0.1 \times \text{T}) \]

Qualification system

The students doing the final exam will loose the mark of the first partial.

Bibliography

Basic:

Complementary: