230482 - BIOPHOT - Biomedical Photonics

Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering

Teaching unit: 739 - TSC - Department of Signal Theory and Communications
731 - OO - Department of Optics and Optometry

Academic year: 2019

Degree: BACHELOR'S DEGREE IN ENGINEERING PHYSICS (Syllabus 2011). (Teaching unit Optional)

ECTS credits: 6

Teaching languages: English

Teaching staff

Coordinator: Artigas Garcia, David

Others: Vilaseca Ricart, Merixell
Royo Royo, Santiago

Opening hours

Timetable: Appointment by email

Prior skills

Optics, photonics, electromagnetic fields and waves

Requirements

Course on photonics

Degree competences to which the subject contributes

Specific:

FOT1. Knowledge and understanding of the interaction between radiation and matter in photonic systems. Knowledge of photonic devices and ability for using them. Knowledge of applications in nanotechnology, materials science, communications and biophysics.

Generical:

3. ABILITY TO IDENTIFY, FORMULATE, AND SOLVE PHYSICAL ENGINEERING PROBLEMS. Planning and solving physical engineering problems with initiative, making decisions and with creativity. Developing methods of analysis and problem solving in a systematic and creative way.

09 CSC EF. ABILITY TO CONCEIVE, DESIGN, IMPLEMENT, AND OPERATE COMPLEX PHYSICAL ENGINEERING SYSTEMS.

Ability to conceive, design, implement, and operate complex systems in the fields of micro and nano technology, electronics, advanced materials, photonics, biotechnology, and space and nuclear sciences.

Transversal:

1. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

2. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.
230482 - BIOPHOT - Biomedical Photonics

Teaching methodology
- lectures
- Discussion of specific cases
- independent learning

Learning objectives of the subject
- Understanding the main physical phenomena of light-tissue interaction.
- Knowing specific cases of applications to biomedicine.
- Knowing the different microscopy, diagnosis and therapy techniques.
- Being able to understand the operational principles of an optical set up.
- Being able to design an optical system with biomedical applications.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 65h</th>
<th>43.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self study: 85h</td>
<td>56.67%</td>
</tr>
</tbody>
</table>
230482 - BIOPHOT - Biomedical Photonics

Content

<table>
<thead>
<tr>
<th>Biomedical Photonics</th>
<th>Learning time: 147h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 63h</td>
</tr>
<tr>
<td></td>
<td>Self study : 84h</td>
</tr>
</tbody>
</table>

Description:
The course will give an overview of the physical mechanism involved in the Light-Tissue interaction, and the differences with non-living mater. This knowledge will then be used to understand how photonics is used in medicine and biology. To do that, we will focus on a given physical effect, analyse its effect on tissue and how this interaction have resulted in a new therapy and diagnosis technique in medicine, or in new imaging and analysis tools in Biology. In every case, details of the state of the art technology will be discussed.

CONTENT:

1. Introduction

2. Optical Microscopy.
 2.1 Basic concepts in microscopy.
 2.2 Increase of the contrast by optical techniques: Oblique illumination, Dark field, Phase contrast, Differential interference contrast and Interference reflection microscopy.
 2.3 Fluorescence microscopy.
 2.4 3D imaging: Laser scanning Confocal, Multiphoton, light sheet microscopy.

3. Effects of Tissue on light.
 3.1 Tissue optics: absorption, scattering, photon transport theory, models etc.
 3.2 Diagnostic techniques
 3.2.1 Optical Coherent Tomography (OCT)
 3.2.2 Reflectance and fluorescence spectroscopy
 3.2.3 Raman spectroscopy
 3.2.3 Pulsioximeter and vein-viewer
 3.2.4 Optical diffuse Tomography
 3.2.5 Photoacoustic imaging
 3.2.6 Novel diagnostic techniques
 3.3 Simulations (TracePro)

4. Effects of absorbed Light on tissue: Laser therapy.
 4.1 Photothermal effects. Application to surgery and dermatology.
 4.2 Ablation. Application to refractive surgery.
 4.3 Photomechanical effects. Application to ophthalmology.

Qualification system

2 partial exams: 70%
Simulation work: 20%
Presentation of a journal paper: 10%
Bibliography

Basic:

