Course guides
230489 - RELG - General Relativity

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 749 - MAT - Department of Mathematics.
748 - FIS - Department of Physics.

Degree: BACHELOR'S DEGREE IN ENGINEERING PHYSICS (Syllabus 2011). (Optional subject).

Academic year: 2020 ECTS Credits: 6.0 Languages: Spanish

LECTURER

Coordinating lecturer: NARCISO ROMÁN ROY
Others: RAMÓN TORRES HERRERA

REQUIREMENTS

It is advisable to have studied the subject "Mechanics" (2A, Degree on Physics Engineering), or "Mathematical Models of Physics" (3B, Degree on Mathematics).

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
3. Knowledge of the scientific method and its applications in physics and engineering. Ability to formulate hypotheses and make critical analysis of scientific problems in the field of physics and engineering. Ability to relate the physical reality with their mathematical models and vice versa.
MAT1. Ability to solve math problems that may arise in engineering. Ability to apply knowledge about linear algebra, geometry, differential geometry, differential and integral calculus, ordinary and partial differential equations, probability and statistics.
FG2. Ability to solve basic problems in mechanics, elasticity, thermodynamics, fluids, waves, electromagnetism and modern physics, and its application in solving engineering problems.

General:
2. ABILITY TO IDENTIFY, FORMULATE, AND SOLVE PHYSICAL ENGINEERING PROBLEMS. Planning and solving physical engineering problems with initiative, making decisions and with creativity. Developing methods of analysis and problem solving in a systematic and creative way.

Transversal:
1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

TEACHING METHODOLOGY

Lectures with interaction with students

LEARNING OBJECTIVES OF THE SUBJECT

The aims of this course are to provide sufficient training to students in order to advance the knowledge of the Theory of General Relativity (TRG). After introducing the basic mathematical tools and reviewing the minkowskian formulation of the Theory of Special Relativity, we want to describe the conceptual progress that led Albert Einstein to formulate the TRG and we state this theory, its current relevance, the experimental tests that support it and the main contributions in the subject of the external field and stellar collapse, generation of black holes and the origin and evolution of the universe: cosmological solutions.
STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>85,0</td>
<td>56.67</td>
</tr>
<tr>
<td>Hours large group</td>
<td>65,0</td>
<td>43.33</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

1. **Complements of tensor algebra and differential geometry.**

 Description:

 Full-or-part-time: 47h 20m
 - Theory classes: 10h
 - Practical classes: 10h
 - Self study: 27h 20m

2. **Review on Special Relativity: The Minkowskian formulation of the Special Relativity.**

 Description:

 Full-or-part-time: 7h
 - Theory classes: 2h
 - Practical classes: 1h
 - Self study: 4h

3. **Principles of General Relativity.**

 Description:

 Full-or-part-time: 3h 30m
 - Theory classes: 1h
 - Practical classes: 1h
 - Self study: 1h 30m

Description:

Full-or-part-time: 11h 50m
Theory classes: 3h 20m
Practical classes: 1h 40m
Self study : 6h 50m

Description:

Full-or-part-time: 6h 30m
Theory classes: 2h
Practical classes: 2h
Self study : 2h 30m

Description:

Full-or-part-time: 16h 20m
Theory classes: 4h
Practical classes: 3h
Self study : 9h 20m

Description:

Full-or-part-time: 7h 10m
Theory classes: 2h
Practical classes: 1h
Self study : 4h 10m
8. Black holes.

Description:

Full-or-part-time: 11h 50m
Theory classes: 3h
Practical classes: 2h
Self study: 6h 50m

9. Maximal extension and conformal compactification.

Description:

Full-or-part-time: 11h 40m
Theory classes: 3h
Practical classes: 2h
Self study: 6h 40m

10. Radiation modeling and collapse: Vaidya solution

Description:

Full-or-part-time: 11h
Theory classes: 2h
Practical classes: 2h
Self study: 7h

Description:

Full-or-part-time: 15h 50m
Theory classes: 4h
Practical classes: 3h
Self study: 8h 50m

GRADING SYSTEM

Two partial exams (P1 and P2). Final exam (F).
Final qualification: The best of (P1 + P2) / 2 and F.
Reevaluation exam.
BIBLIOGRAPHY

Basic: