Course guides
230817 - ARAP - Reinforcement Learning and Deep Learning

Unit in charge: Barcelona School of Telecommunications Engineering
Teaching unit: 739 - TSC - Department of Signal Theory and Communications.
Degree: BACHELOR’S DEGREE IN TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES ENGINEERING (Syllabus 2015). (Optional subject).
BACHELOR’S DEGREE IN DATA SCIENCE AND ENGINEERING (Syllabus 2017). (Optional subject).
Academic year: 2020
ECTS Credits: 6.0
Languages: Catalan, English

LEKTURER
Coordinating lecturer: Giró Nieto, Xavier
Others: Cabrera Bean, Margarita Asuncion
Vidal Manzano, Jose

PRIOR SKILLS

REQUIREMENTS
For GRETST students, Introduction to deep learning (IDL 230325). For GCED students, Machine Leaning 2 (AA2 270222).

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Generical:
08 CRPE. ABILITY TO IDENTIFY, FORMULATE AND SOLVE ENGINEERING PROBLEMS. To plan and solve engineering problems in the ICT with initiative, making decisions and with creativity. To develop a method of analysis and problem solving in a systematic and creative way.

Transversal:
04 COE N2. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 2. Using strategies for preparing and giving oral presentations. Writing texts and documents whose content is coherent, well structured and free of spelling and grammatical errors.
06 URI N1. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections, premises and services that are available for designing and executing simple searches that are suited to the topic.
06 URI N2. EFFECTIVE USE OF INFORMATION RESOURCES - Level 2. Designing and executing a good strategy for advanced searches using specialized information resources, once the various parts of an academic document have been identified and bibliographical references provided. Choosing suitable information based on its relevance and quality.
06 URI N3. EFFECTIVE USE OF INFORMATION RESOURCES - Level 3. Planning and using the information necessary for an academic assignment (a final thesis, for example) based on a critical appraisal of the information resources used.

TEACHING METHODOLOGY
Classroom lectures and labs
LEARNING OBJECTIVES OF THE SUBJECT

Master the principles of reinforcement learning as an artificial intelligence tool based on the interaction of the machine with its environment, with applications to control tasks (e.g., robotics, autonomous driving) or decision making (e.g., resource optimization in wireless communication networks).
Design and train deep neural networks capable of learning with little or no supervision, both for discriminative and generative tasks, with special attention on multimedia applications (vision, language, and speech).

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>98,0</td>
<td>65.33</td>
</tr>
<tr>
<td>Hours small group</td>
<td>26,0</td>
<td>17.33</td>
</tr>
<tr>
<td>Hours large group</td>
<td>26,0</td>
<td>17.33</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction to reinforcement learning
Description:
Describe with examples the fundamental concepts and the problems that can be solved.

Full-or-part-time: 2h
Theory classes: 2h

The exploration-exploitation trade-off
Description:
- The exploration-exploitation trade-off
- Study case: Multi-armed bandits.

Full-or-part-time: 1h
Theory classes: 1h

Markov decision processes (MDP)
Description:
- The agent-environment interface
- Goals and rewards
- Markov Decision Processes
- Value functions and optimality: Bellman equation

Full-or-part-time: 2h
Theory classes: 2h
<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
<th>Full-or-part-time</th>
<th>Theory classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic programming</td>
<td>Description: Policy evaluation, improvement and iteration, Dynamic programming based on MDP</td>
<td>1h</td>
<td>1h</td>
</tr>
<tr>
<td>Monte-Carlo methods</td>
<td>Description: First-visit Monte-Carlo methods, Every-visit Monte-Carlo methods, Exploration and exploitation, On-policy and off-policy methods</td>
<td>2h 30m</td>
<td>2h 30m</td>
</tr>
<tr>
<td>Temporal-Difference (TD) Learning</td>
<td>Description: Model-free learning using time differences, SARSA and Q-learning with discrete actions, Games</td>
<td>2h 30m</td>
<td>2h 30m</td>
</tr>
<tr>
<td>Policy gradient methods</td>
<td>Description: Policy gradient, Value function approximation, Actor-Critic methods, Baseline functions</td>
<td>2h 30m</td>
<td>2h 30m</td>
</tr>
<tr>
<td>Deep reinforcement learning</td>
<td>Description: Modeling of q-value functions and policies with deep neural networks</td>
<td>2h 30m</td>
<td>2h 30m</td>
</tr>
</tbody>
</table>
Advanced deep learning

Description:
- Generative models: GANs, VAEs and Flows.
- Advanced Recurrent Neural Networks.
- Attention mechanism and Transformers.
- Graph Neural Networks.
- Self-supervised learning and meta-learning.
- Supercomputation for deep learning.

Full-or-part-time: 10h
Theory classes: 10h

Reinforcement learning labs

Description:
Labs in Matlab and/or Python distributed throught the lectures
- Dynamic channel allocation
- Blackjack
- Job-shop scheduling
- Tabular Q-Learning

Full-or-part-time: 13h
Laboratory classes: 13h

Deep Learning Labs

Description:
Labs in PyTorch about:
- Q-learning with neural networks.
- Vanilla policy gradients (REINFORCE).
- Optimizers for deep neural networks
- Attention models
- Transfer learning
- Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)

Full-or-part-time: 13h
Laboratory classes: 13h

GRADING SYSTEM

Exams and evaluation of labs

BIBLIOGRAPHY

Basic:
RESOURCES

Other resources:
Course website: https://telecombcn-dl.github.io/drl-2020/