Course guides
240032 - 240032 - Numerical Methods

Unit in charge: Barcelona School of Industrial Engineering
Teaching unit: 749 - MAT - Department of Mathematics.

Degree: BACHELOR'S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Compulsory subject).
BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Compulsory subject).

Academic year: 2020 ECTS Credits: 4.5 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: ANTONIO SUSIN SANCHEZ

Others:

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTE

Specific:
1. Capacity to solve mathematical problems that can appear in engineering. Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

TEACHING METHODOLOGY

This subject comprises theoretical lectures, exercise sessions and computer practice. During theoretical lectures the academia will present the contents and learning objectives, while the exercise sessions have been thought to discuss and solve problems previously addressed by the student in his independent learning. During the practice session in the computer room, the student will implement and solve case problems. In these sessions teamwork will be enhanced and specific software packages like Matlab will be used.

LEARNING OBJECTIVES OF THE SUBJECT

The subject has been thought to provide the student with a wide knowledge about function interpolation and approximation techniques, but with special emphasis to support the resolution of physical and technological problems by means of the finite element method. Another objective is to get across to the students the generality of the finite element method for the study of boundary value problems, that could strongly differ in fields from the start, but the general formulation gives them a common substract. Finally, we intend as well that students understand in a precise way all the tecnical details about the implementation of such methodologies and be able to aplly them in particular cases.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>15,0</td>
<td>13.33</td>
</tr>
<tr>
<td>Self study</td>
<td>67,5</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>26.67</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h
CONTENTS

INTERPOLATION OF FUNCTIONS

Description:

Related competencies:
CE1. Capacity to solve mathematical problems that can appear in engineering. Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

Full-or-part-time: 13h
Theory classes: 3h
Practical classes: 1h
Laboratory classes: 1h
Self study: 8h

APPROXIMATION OF FUNCTIONS

Description:

Related competencies:
CE1. Capacity to solve mathematical problems that can appear in engineering. Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

Full-or-part-time: 13h 30m
Theory classes: 2h
Practical classes: 1h
Laboratory classes: 2h
Self study: 8h 30m

INTRODUCTION TO THE FINITE ELEMENT METHOD

Description:

Related competencies:
CE1. Capacity to solve mathematical problems that can appear in engineering. Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

Full-or-part-time: 19h
Theory classes: 4h
Laboratory classes: 5h
Self study: 10h
ONE-DIMENSIONAL STATIONARY PROBLEMS

Description:
Discretization of the domain and related concepts. Model equation and weak form. Element equations. Assembly. Boundary conditions, solution and postprocessing. Two and three-dimensional problems with symmetries. Other balance equations. Working sessions at the computer room with one-dimensional case examples.

Related competencies:
CE1. Capacity to solve mathematical problems that can appear in engineering. Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

Full-or-part-time: 32h
Theory classes: 6h
Practical classes: 4h
Laboratory classes: 2h
Self study: 20h

TWO-DIMENSIONAL STATIONARY PROBLEMS

Description:
Model equation, weak form and element equations. Families of elements. Assembly. Balance of flows, boundary conditions and resolution. Working sessions at the computer room with two-dimensional case examples.

Related competencies:
CE1. Capacity to solve mathematical problems that can appear in engineering. Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

Full-or-part-time: 35h
Theory classes: 6h
Practical classes: 4h
Laboratory classes: 4h
Self study: 21h

ACTIVITIES

CONTINUOUS EVALUATION 2

Description:
Several test in the computer room or by the Internet, where the concepts related with the Matlab implementation will be evaluated.

Full-or-part-time: 1h
Laboratory classes: 1h

PARTIAL EXAM

Description:
Assessment of knowledge.

Delivery:
Solved exam.
FINAL EXAM

Description:
Assessment of knowledge.

Delivery:
Solved exam.

GRADING SYSTEM

The final mark will be computed by means of,

\[FM = 0.1 \times MA + 0.30 \times MT + 0.60 \times FE \]

where MA is the resulting mark of the exams of Matlab, MT is the mark of the mid term exam and FE is the mark of the final exam.

The reevaluation will consist in an exam including all the contents and scheduled by the School. In case of reevaluation, the final mark will be computed by means of:

\[FM = 0.10 \times MA + 0.9 \times RM \]

where RM is the reevaluation mark.

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Other resources:
Students of this subject will be provided with:
- List of problems
- Notes and/or slides related to practice lectures.
- A scholar to support consultation about the Matlab package and the case examples.
- Detailed information about the course in a web page.