Degree competences to which the subject contributes

Specific:
2. Capacity to solve mathematical problems that can appear in engineering. Aptitude to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and derived partial equations; numerical methods; numerical algorithm; statistics and optimisation.

Transversal:
1. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Learning objectives of the subject

After the course the student will be able to:
1. Design how to collect data and how to convert these data into useful information for decision making in environments where there is variability.
2. Understand the concept of variability, how it is measured, the problems it brings and how its influence can be reduced in any process.
3. Know and apply some of the most common techniques of data collection and analysis.
4. Learn the use of statistical software to solve problems as close as possible to those in their future professional work.
240042 - Statistics

Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td></td>
<td></td>
<td></td>
<td>90h</td>
</tr>
<tr>
<td>Hours large group:</td>
<td>30h</td>
<td>0h</td>
<td>30h</td>
<td>0h</td>
<td>90h</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td></td>
<td>0h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours small group:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided activities:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 20.00% of Total learning time is dedicated to large group hours.
- 0.00% of Total learning time is dedicated to medium group hours.
- 20.00% of Total learning time is dedicated to small group hours.
- 0.00% of Total learning time is dedicated to guided activities.
- 60.00% of Total learning time is dedicated to self-study.
INTRODUCTION TO STATISTICS. DESCRIPTIVE STATISTICS

Learning time: 10h
Theory classes: 2h
Practical classes: 1h
Laboratory classes: 1h
Self study: 6h

Description:
Graphics: Histogram, boxplot, scatterplots.
Specific objectives:
Knowing and appreciating the possibilities of statistical techniques to obtain information from data.

VARIABILITY. PROBABILITY DISTRIBUTIONS

Learning time: 28h
Theory classes: 4h
Practical classes: 4h
Laboratory classes: 4h
Self study: 16h

Description:
Specific objectives:
Understanding the concept of variability, how it is measured and the problems it generates. Knowing and being able to use some probability distributions.

ESTIMATION OF POPULATION PARAMETERS

Learning time: 24h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 2h
Self study: 16h

Description:
Specific objectives:
Learning the theoretical foundation for later establishing criteria for making decisions in the presence of variability.
SIGNIFICANCE TESTS. COMPARISON OF TREATMENTS

Description:

Specific objectives:
- Being able to apply the most common statistical tests, and knowing its possibilities and limitations. Also, knowing and being able to apply the most common techniques for collecting and analyzing data for the comparison of treatments.

MEASURING THE RELATIONSHIP BETWEEN TWO VARIABLES. SIMPLE AND MULTIPLE LINEAR REGRESSION

Description:

Specific objectives:
- Being able to identify relationships between variables and to explain the relationship with the most appropriate models.
Planning of activities

| WORKGROUP TRAINING IN DATA ANALYSIS TECHNIQUES | Hours: 20h
Practical classes: 2h
Self study: 18h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>The work will be to establish what is the strategy for achieving an objective, using information obtained through the analysis of a database.</td>
</tr>
<tr>
<td>Support materials:</td>
<td>The project will be performed through a web platform specifically created for the subject. The web platform will extract the data in different phases. Written documentation is available on the intranet.</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td>The web platform will keep a record of each group’s actions, to be taken into account in the assessment. Each group will also make presentations and reports.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Applying the studied concepts in the lectures in a practical example, realistic, close to the student and with real objectives.</td>
</tr>
</tbody>
</table>

| EXERCISES RESOLUTION | Hours: 15h
Practical classes: 2h
Self study: 13h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>The students will have exercises to solve. These assignments will be done individually or in groups, as indicated by the teacher. They will be delivered and discussed in the hands-on sessions. Some of these activities will be assessed by the teacher, self-assessed or co-assessed.</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Each lesson will have a collection of exercises available at least on the intranet (probably also as printed material).</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td>The exercises done by each student will be used to assess this activity.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Practicing the acquired concepts and having feedback on the level of assimilation and understanding of the concepts.</td>
</tr>
</tbody>
</table>

| CASE STUDIES | Hours: 15h
Self study: 15h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Students must understand a case study describing a realistic industrial problem. Using a database to be provided, they must determine the appropriate statistical tools to answer questions, using statistical software.</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Students will have self-learning videos about the statistical software used, together with the set of cases and databases on the intranet.</td>
</tr>
</tbody>
</table>
Descriptions of the assignments due and their relation to the assessment:
The evaluation will be based on questionnaires about the case studies, class discussion and, eventually, in delivering reports.

Specific objectives:
Acquiring skills in working with data and the use of statistical software packages. Identifying the appropriate statistical tools to each situation.

<table>
<thead>
<tr>
<th>RESOLUTION OF ONLINE QUESTIONNAIRES</th>
<th>Hours: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Students must answer multiple choice questions through the subject's intranet.</td>
<td></td>
</tr>
<tr>
<td>Support materials: Questionnaires will be available on the subject's intranet. Eventually, other exercises will be available through a specific web platform.</td>
<td></td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment: Either the completion of the questionnaires or their numerical evaluation will be used as evidence for this activity.</td>
<td></td>
</tr>
<tr>
<td>Specific objectives: Encouraging independent learning, facilitating self-study from the immediate feedback that the student obtains.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PARTIAL EXAM</th>
<th>Hours: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Assessment of knowledge.</td>
<td></td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment: Solved exam.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FINAL EXAM</th>
<th>Hours: 15h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Assessment of knowledge.</td>
<td></td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment: Solved exam.</td>
<td></td>
</tr>
</tbody>
</table>
The final mark (NF) will consist of four inputs:
1) Continuous assessment mark: AC
2) Mark of the project work: NT
3) Midterm Exam: EP
4) Final Exam: EF

The final mark will be calculated according to:
$$NF = 0.25*AC + 0.15*NT + 0,15*EP + 0.45*EF$$

If the reavaluación exam is performed, the grade obtained (NR) will replace the EP and EF. Therefore, the final mark in this case will be:
$$NF = 0.25*AC + 0.15*NT + 0.6*NR$$

Bibliography

Basic:

Complementary:

Others resources:

Students will have, as written material:
- Copies of the slides used in class.
- Collections of exercises (some with their solution.)
- Collections of case studies.
- Statistical Tables.

All written material will be available, at least, in the subject's intranet.

Students will have, as multimedia material:
- Educational videos created by teachers of the subject, and available on Videoteca UPC (UPCommons).
- Links to web pages and videos of interest

Students will have, as software:
- The statistical software package MINITAB. This software is in the computer rooms and also available to students through a campus license.
- The program for HP calculators Stat+, freely available, prepared by teachers of the subject.