Degree competences to which the subject contributes

Specific:
1. Knowledge and use of electric machines and circuit theory principles.

Teaching methodology

Exhibition in the Classes that combine theory and problems. The participatory development of the problems will be made in the form. There will also be laboratory practicals.

Learning objectives of the subject

At the end of the course, the student should be able to:
* Solve various types of electrical circuits in steady state; both DC and AC single and three phase symmetric.
* Know the different types of electrical machines and their basic characteristics and know how to select the most appropriate for an application.
* Apply criteria in the selection and sizing of the components of an electrical installation (cables, protections, etc.).
* Learn the basics of automation of industrial processes and know-how simple programs for programmable logic controllers.
Study load

<table>
<thead>
<tr>
<th></th>
<th>Hours large group:</th>
<th>Hours medium group:</th>
<th>Hours small group:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 150h</td>
<td>0h</td>
<td>50h</td>
<td>10h</td>
<td>0h</td>
<td>90h</td>
</tr>
<tr>
<td></td>
<td>0.00%</td>
<td>33.33%</td>
<td>6.67%</td>
<td>0.00%</td>
<td>60.00%</td>
</tr>
</tbody>
</table>
Content

DC Circuits

Description:
- Electric current and potential difference
- Resistance of a conductor. Ohm's Law
- Conventions signs in accordance with IEC
- Kirchhoff's Laws
- Resistance association
- Charging and discharging of capacitors and inductors
- Power and energy
- Measuring devices

Related activities:
- Problem solving and videos

Specific objectives:
- Learn to correctly represent the current circuits
- Know how to interpret and solve dc circuits

Learning time: 17h
- Theory classes: 4h 30m
- Self study: 12h 30m

AC circuits

Description:
- Alternating current. Measurement of an alternating quantity
- Behavior of resistors, inductors and capacitors
- Generalization to more complicated circuits. Fassor associated with an alternating magnitude. Operations phasor
- Resonance and reactive compensation
- Power and energy
- Measuring devices
- Aparells de mesura

Related activities:
- Problem solving, videos and practical

Specific objectives:
- Represent, solve and calculate AC circuits

Learning time: 26h 40m
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 18h 40m
3-phase systems

Description:
- Definition 3-phase system. Simple and compound tensions
- Piping loads
- Symmetrical and balanced systems with symmetrical load. Schematic phase-neutral equivalent
- Powers. Power Measurement
- The electromagnetic contactor. On-off circuit

Related activities:
- Problems, videos and practical

Specific objectives:
- Can analyze and solve three-phase circuits

Learning time: 31h 20m
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 23h 20m

Transformers

Description:
- Description and working principle
- Ideal transformer
- Primary and secondary reduction
- Real transformers
- 3-phase transformers

Related activities:
- Problems

Specific objectives:
- Understand the operation of a transformer
- Know how to calculate transformer circuits
- Knowing how the presence of a transformer for short circuit

Learning time: 4h 30m
- Theory classes: 3h
- Self study: 1h 30m
240251 - Electrotechnics and Electrical Machines

electrical machines

Description:
Definition and principle of operation
Mechanical Loading: torque and speed
Characteristic curves. Four-quadrant operation
DC motors series excitation and separate excitation
Synchronous motors
Induction motors

Related activities:
Problems

Specific objectives:
Understand the practical operation of electric motors
Knowing how to find the operating point of an engine
Can analyze the nameplate of a motor and calculate performance data from it

Learning time: 14h 20m
Theory classes: 7h 30m
Self study : 6h 50m

Cable selection

Description:
General, parts and materials involved Criteria
Criterion of the maximum current
Criterion of the maximum voltage drop
Criterion of the maximum short-circuit current

Related activities:
Problems

Specific objectives:
Learn to determine the section must have a cable for an application
Namely determining the voltage drop in the cable to be

Learning time: 9h 40m
Theory classes: 4h 30m
Self study : 5h 10m
Protection of electrical installations

Learning time: 24h
Theory classes: 10h 30m
Self study: 13h 30m

Description:
- Concepts and overcharge
- Calculation of short-circuit current
- Fuses, circuit breakers and overload relays
- Effects of electrical current to the human body
- Concept earth leakage
- Direct and indirect contact
- Reference grounding and protection
- Connection technology neutral
- Switches and differential relays

Related activities:
- Problem solving, videos and practical

Specific objectives:
- Know the elements that protect electrical installations and properties

Industrial automation

Learning time: 22h 30m
Theory classes: 3h
Laboratory classes: 10h
Guided activities: 4h
Self study: 5h 30m

Description:
- Elements of a system to automate
- Electromechanical automation
- PLCs
- Programming Languages
- Elements of supervision

Related activities:
- Practices

Specific objectives:
- Meet the automation, architecture and applications
- Learn to do basic programming in PLC ladder diagram and grafcet
- Learn the basic operation of the monitor elements
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRACTICAL CIRCUIT switched</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Description:</td>
<td>Make the connection of a single-phase circuit of the household type</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Script of practice and laboratory</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td>Evidence: The completion of the practice assembly.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Understand the operation and connection of a single-phase circuit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRACTICAL CIRCUIT START-STOP</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Description:</td>
<td>Connection of an industrial three-phase circuit to start and stop a motor</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Script of practice and laboratory</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td>Evidence: The completion of the practice assembly.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Understand the operation of a three-phase circuit</td>
</tr>
<tr>
<td></td>
<td>Understanding how a simple electromechanical automation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours: 2h</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRACTICE PLCs</td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Description:</td>
<td>Learning to program PLCs</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Script of practice and laboratory</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td>Evidence: The completion of the practice assembly.</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>Understand the operation of a PLC</td>
</tr>
<tr>
<td></td>
<td>Learning automata programming in ladder diagram</td>
</tr>
</tbody>
</table>
| **PRACTICE LADDER DIAGRAM** | **Hours:** 2h
Laboratory classes: 2h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Prepare a program in ladder diagram for a particular automation and test in the PLC</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Script of practice and laboratory</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td></td>
</tr>
</tbody>
</table>
- Evidence:
The preliminary design of the program |
| **Specific objectives:** | Understand how to program in ladder diagram |

| **PRACTICE Grafcet** | **Hours:** 2h
Laboratory classes: 2h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Prepare for a program grafcet automation and test in the PLC</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Script of practice and laboratory</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td></td>
</tr>
</tbody>
</table>
- Evidence:
The preliminary design of the program |
| **Specific objectives:** | Understanding the language and expertise grafcet simple programs with it |

| **PRACTICAL AUTOMATION OF A CHEMICAL PROCESS** | **Hours:** 2h
Laboratory classes: 2h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Design the program to automate a simple process and program to the PLC</td>
</tr>
<tr>
<td>Support materials:</td>
<td>Script of practice and laboratory</td>
</tr>
<tr>
<td>Descriptions of the assignments due and their relation to the assessment:</td>
<td></td>
</tr>
</tbody>
</table>
- Evidence:
The preliminary design of the program |
| **Specific objectives:** | Understand the operation of PLCs when working with real variables
Meet the operation graphics |

| **PARTIAL EXAMINATION** | **Hours:** 1h 15m
Theory classes: 1h 15m |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description:
Reviewing the first three issues of the course

Support materials:
Statement, Form and Calculator

Descriptions of the assignments due and their relation to the assessment:
Examination

Specific objectives:
See if acquired knowledge are well

FINAL EXAMINATION

| Description: |
| Review the content of the subject having a share of problems and an explanatory section on practices and away from the subject of the problems are not |

| Support materials: |
| Statement, Form and Calculator |

| Descriptions of the assignments due and their relation to the assessment: |
| Examination |

| Specific objectives: |
| See if acquired knowledge are well |

| Hours: |
| 3h |

| Theory classes: |
| 3h |

Qualification system

The final mark will be the highest from the following expressions:

Nota f1 = 0.5* Mark of the final exam + 0.25* Mark of the Practices + 0.25* Mark of the partial exam

Nota f2 = 0.7* Mark of the Final Exam + 0.3* Mark of the Practices

The mark of the practices will be the average of the marks from each of the scheduled practices. The practices which have not been carried out will be punctuated with a zero.

If present at the examination of reassessment, the same expressions apply for the calculation of the ratings but replaces the final exam for the exam reevaluation.

Regulations for carrying out activities

The exam or midterm and final exams will be conducted on the dates and times designated by the School.

The final exam (Like the reassessment exam) consists of a part in which concepts of theory and laboratory practices and wonder of problems. The share of problems, the student may use a calculator and sheet form.
240251 - Electrotechnics and Electrical Machines

Bibliography

Others resources:
NOTES AND VIDEOS OF THE SUBJECT TO BE ACCESSIBLE FROM DIGITAL CAMPUS