240607 - Development of Applications Based in Microcontrollers

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering
Teaching unit: 710 - EEL - Department of Electronic Engineering
Academic year: 2018
Degree: BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 4,5 Teaching languages: Catalan, Spanish

Teaching staff
Coordinator: JUAN MANUEL MORENO EGUILAZ
Others: JUAN MANUEL MORENO EGUILAZ

Opening hours
Timetable: Upon request by e-mail

Prior skills
Capacity to analyze electronic circuits, basic knowledge of computer science.
Electronics, Computer Science

Degree competences to which the subject contributes
Specific:
1. Knowledge of electronics fundamentals.

Transversal:
2. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Teaching methodology
- MD-2: Lecture class
- MD-3: Autonomous learning
- MD.5. Learning by doing.

Learning objectives of the subject
General objectives:
- A first tutorial to the world of microcontrollers, with a fundamentally practical approach.

Specific objectives:
- Know the fundamentals of microcontrollers.
- Learn to develop microcontroller based applications.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Hours large group: 0h 0.00%</th>
<th>Hours medium group: 45h 40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group: 0h 0.00%</td>
<td>Guided activities: 0h 0.00%</td>
<td>Self study: 67h 30m 60.00%</td>
</tr>
</tbody>
</table>
Content

| 1. Introduction to the microcontrollers | Learning time: 2h 15m
Theory classes: 1h 30m
Self study : 0h 45m |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>- Definitions.</td>
<td></td>
</tr>
<tr>
<td>- Components of a microcontroller.</td>
<td></td>
</tr>
<tr>
<td>- History of the microcontrollers.</td>
<td></td>
</tr>
<tr>
<td>- Applications of the microcontrollers.</td>
<td></td>
</tr>
<tr>
<td>- Current trends.</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>- Complementary reading.</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>- Introduce the students to the world of microcontrollers.</td>
<td></td>
</tr>
<tr>
<td>- Know the basic components.</td>
<td></td>
</tr>
<tr>
<td>- Understand the past, the present and the future.</td>
<td></td>
</tr>
</tbody>
</table>

| 2. Hardware | Learning time: 18h
Theory classes: 12h
Self study : 6h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>- Architectures.</td>
<td></td>
</tr>
<tr>
<td>- Memories.</td>
<td></td>
</tr>
<tr>
<td>- Interruptions.</td>
<td></td>
</tr>
<tr>
<td>- Characteristic special.</td>
<td></td>
</tr>
<tr>
<td>- Peripherals.</td>
<td></td>
</tr>
<tr>
<td>- Buses of communications</td>
<td></td>
</tr>
<tr>
<td>Related activities:</td>
<td></td>
</tr>
<tr>
<td>- Interactive classes.</td>
<td></td>
</tr>
<tr>
<td>- Laboratory.</td>
<td></td>
</tr>
<tr>
<td>Specific objectives:</td>
<td></td>
</tr>
<tr>
<td>- Show the characteristics microcontroller hardware.</td>
<td></td>
</tr>
<tr>
<td>- Explain the fundamentals of hardware in order to design microcontroller based applications.</td>
<td></td>
</tr>
</tbody>
</table>
3. Software

Description:
- Programming languages.
- The assembler language.
- The C language.
- Design methodology.
- Data structures for microcontrollers.
- The standard IEEE-754.
- Real Time Operating Systems (RTOS).

Related activities:
- Interactive classes.
- Laboratory.

Specific objectives:
- Show the characteristics of microcontroller software.
- Explain the fundamentals of software in order to develop microcontroller based applications.

Learning time: 22h 30m
- Theory classes: 15h
- Self study: 7h 30m

4. Tools for the development of microcontroller based applications

Description:
- Integrated Development Environments (IDEs)
- Assemblers, compilers, simulators, debuggers, etc.

Related activities:
- Interactive classes.
- Laboratory.

Specific objectives:
- Know the basic tools to develop a microcontroller based application.

Learning time: 2h 15m
- Theory classes: 1h 30m
- Self study: 0h 45m
5. Applications

Learning time: 22h 30m
- Laboratory classes: 15h
- Self study: 7h 30m

Description:
- Simulation session (1.5h + 0.75h).
- Basic experimental session (1.5h + 0.75h).
- Project I (6h + 3h).
- Project II (6h + 3h).

Related activities:
- Recommended reading.
- Laboratory.

Specific objectives:
- Practice all the acquired knowledge. 2 sessions of introduction and 2 mini-projects with microcontroller based applications will be carried out.

Qualification system

- IE.1: Written exams (partial, 25% and final, 50%): total: 75%
- IE.4: Laboratory: 25%

Regulations for carrying out activities

- It will not allow any type of documentation during the development of the written examinations for those parts concerning theoretic knowledge.

Bibliography

Basic:

Complementary: