240615 - An Introduction to Data Science

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering
Teaching unit: 715 - EIO - Department of Statistics and Operations Research
Academic year: 2019
Degree: BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 4,5
Teaching languages: English

Teaching staff
Coordinator: JOSEP GINEBRA
Others: JOSEP GINEBRA

Opening hours
Timetable: Monday and Wednesday from 11:30 to 13:30

Prior skills
To have passed Estadística.

Degree competences to which the subject contributes

Specific:
1. Basic knowledge on the use and programming of computers, operative systems, databases and computer software
 with an engineering application.
2. Knowledge and capacities to organise and manage projects. Knowing the organisational structure and functions of a
 project office.

Transversal:
3. EFFICIENT ORAL AND WRITTEN COMMUNICATION. Communicating verbally and in writing about learning
 outcomes, thought-building and decision-making. Taking part in debates about issues related to the own field of
 specialization.
4. TEAMWORK. Being able to work as a team player, either as a member or as a leader. Contributing to projects
 pragmatically and responsibly, by reaching commitments in accordance to the resources that are available.

Teaching methodology

All classes will be taught in a computer lab. The data analysis will be done with MINITAB and with R. Every week there
will be small data analysis assignments to be done at home. Students will have to do a final project.

Learning objectives of the subject

At the end of the course the student should be able to identify situations where it is useful to analyze data, to identify the
model and/or method of analysis that is best for his data, to build a model that summarizes the information in the data
and allows to make predictions, to reduce the dimensionality and visualize multivariate data, to implement supervised and
unsupervised classification algorithms, and to evaluate the quality of the results obtained.
Study load

<table>
<thead>
<tr>
<th></th>
<th>Total learning time: 112h 30m</th>
<th>Hours large group: 0h 0.00%</th>
<th>Hours medium group: 45h 40.00%</th>
<th>Hours small group: 0h 0.00%</th>
<th>Guided activities: 0h 0.00%</th>
<th>Self study: 67h 30m 60.00%</th>
</tr>
</thead>
</table>
240615 - An Introduction to Data Science

Content

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description:</th>
<th>Learning time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Introduction</td>
<td>(ENG) 1.- Problems: Association, prediction and classification. 2.- Tools: Statistical models and multivariate analysis.</td>
<td>3h 30m</td>
</tr>
<tr>
<td>Chapter 2: Linear models for continuous response</td>
<td>(ENG) 1.- Normal linear model. 3.- Model fit; least squares and robust regression. 3.- ANOVA table and goodness of fit measures. 4.- Inference on the model parameters. 5.- Prediction. 6.- Model checking. 7.- Model selection. 8.- Cross validation and lack of fit tests. 9.- Model interpretation; Bias, collinearity and causality. 10.- Use of categorical explanatory variables. 11.- Comparison of means. 12.- Analysis of two-level factorial designs.</td>
<td>30h</td>
</tr>
<tr>
<td>Chapter 3: Non-linear models for a continuous response</td>
<td>1.- Normal non-linear model. 2.- Model fit. 3.- Inference. 4.- Model checking.</td>
<td>6h</td>
</tr>
<tr>
<td>Chapter 4: Categorical and discrete response models</td>
<td>(ENG) 1 Generalized linear model. 2. - Count response models. 3.- Binary response models. 4.- Model fit. 5.- Inference. 6.- Model checking. 7.- Prediction. 8.- Model interpretation. 9.- Contingency tables and models for a polytomous response.</td>
<td>22h 30m</td>
</tr>
</tbody>
</table>
240615 - An Introduction to Data Science

Chapter 5: Time series models

Description:
1. Description of a time series. 2. AR models. 3. MA models. 4. ARIMA models. 5. Seasonal ARIMA models.

Learning time: 13h
- Theory classes: 3h
- Laboratory classes: 3h
- Guided activities: 3h
- Self study: 4h

Chapter 6: Visualization of multivariate data (Dimensionality reduction)

Description:
- Principal components analysis. 2.- Correspondence analysis.

Learning time: 6h
- Theory classes: 1h 30m
- Laboratory classes: 1h 30m
- Self study: 3h

Chapter 7: Cluster analysis (Unsupervised classification)

Description:

Learning time: 6h 30m
- Theory classes: 1h 30m
- Laboratory classes: 1h 30m
- Guided activities: 1h 30m
- Self study: 2h

Chapter 8: Discriminant analysis (Supervised classification)

Description:
1. Linear discriminant. 2.- Quadratic discriminant. 3.- Logistic discriminant.

Learning time: 8h 30m
- Theory classes: 1h 30m
- Laboratory classes: 1h 30m
- Guided activities: 1h 30m
- Self study: 4h
There will be a take home midterm exam and an in class final exam.

Grade = 0,1 Assignments + 0,3 Final Project + 0,1 Midterm + 0,5 Final Exam

During the 2019-20 spring semester, as a consequence of the covid19 crisis, the qualification method will be the same one, with the only difference that the final exam will not be in class, but a take home exam.

Chapter 9: Non-parametric regression and classification models

<table>
<thead>
<tr>
<th>Learning time: 4h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 1h 30m</td>
</tr>
<tr>
<td>Laboratory classes: 1h 30m</td>
</tr>
<tr>
<td>Self study : 1h 30m</td>
</tr>
</tbody>
</table>

Description:
1.- Local smoothers. 2.- Nearest neighbors. 3.- Additive models. 4.- Classification and regression trees. 5.- Neural networks.
Bibliography

Basic:

Complementary:

