240630 - Distribution Piping Systems

Coordinating unit: 240 - ETSEIB - Barcelona School of Industrial Engineering
Teaching unit: 729 - MF - Department of Fluid Mechanics
Academic year: 2018
Degree: BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 4.5 Teaching languages: English

Teaching staff
Coordinator: FRANCESC XAVIER ESCALER PUIGORIOL
Others: FRANCESC XAVIER ESCALER PUIGORIOL

Prior skills
Fundamentals of Fluid Mechanics

Degree competences to which the subject contributes

Transversal:
1. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

Teaching methodology

This course will consist of explanation lectures and sessions for problem solving. The explanation lectures will be used by the teacher to expose and comment with the students the theoretical concepts and equations. The lectures devoted to problem solving will require the student to participate actively and the teacher will provide orientation and support to solve the practical cases.

Learning objectives of the subject

The objective of the course is that the student learns how to apply in an organized and systematic way the fundamentals that determine the fluid transport inside pipes. With such competences the student must be able to set out and/or resolve a liquid or gas flow system through a pipe net with different complexity. In particular, the student must:
- Identify the type of flow under study and its physical characteristics.
- Understand the equations that govern the pipe flow.
- Solve mathematically permanent incompressible pipe flow.
- Solve transient flow. Predict the water hammer.
- Solve mathematically permanent compressible pipe flow.
240630 - Distribution Piping Systems

Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Hours large group: 0h 0.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group: 45h 40.00%</td>
<td>Hours small group: 0h 0.00%</td>
</tr>
<tr>
<td>Guided activities: 0h 0.00%</td>
<td>Self study: 67h 30m 60.00%</td>
</tr>
</tbody>
</table>

Content

- FLUID MECHANICS REVIEW

Learning time: 15h
Theory classes: 3h
Practical classes: 3h
Self study: 9h

- INCOMPRESSIBLE PIPE FLOW

Learning time: 22h 30m
Theory classes: 4h 30m
Practical classes: 4h 30m
Self study: 13h 30m

- TRANSIENT FLOW. WATER HAMMER

Learning time: 37h 30m
Theory classes: 7h 30m
Practical classes: 7h 30m
Self study: 22h 30m

- COMPRESSIBLE PIPE FLOW

Learning time: 37h 30m
Theory classes: 7h 30m
Practical classes: 7h 30m
Self study: 22h 30m
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLUTION OF WRITING EXERCISES LESSON 1</td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>SOLUTION OF WRITING EXERCISES LESSON 2</td>
<td>Self study: 9h</td>
</tr>
<tr>
<td>SOLUTION OF WRITING EXERCISES LESSON 3</td>
<td>Self study: 10h</td>
</tr>
<tr>
<td>SOLUTION OF WRITING EXERCISES LESSON 4</td>
<td>Self study: 10h</td>
</tr>
<tr>
<td>COMPUTATIONAL SIMULATION CASE 1</td>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td>COMPUTATIONAL SIMULATION CASE 2</td>
<td>Guided activities: 5h</td>
</tr>
<tr>
<td>ATTENDANCE AND PARTICIPATION AT THE CLASSROOM</td>
<td>Practical classes: 22h 30m</td>
</tr>
</tbody>
</table>

Qualification system

Final mark = 0.25*final exam mark + 0.25*solved exercises mark + 0.25*team work mark +0.25*classroom involvement mark

Regulations for carrying out activities

To pass, it is compulsory to obtain a result above zero in at least three of the four partial marks.
Bibliography

Basic:

Complementary:

Others resources: