Course guides
240630 - 240630 - Distribution Piping Systems

Unit in charge: Barcelona School of Industrial Engineering
Teaching unit: 729 - MF - Department of Fluid Mechanics.
Degree: BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Optional subject).
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2020 ECTS Credits: 4.5 Languages: English

LECTURER
Coordinating lecturer: FRANCESC XAVIER ESCALER PUIGORIOL
Others: FRANCESC XAVIER ESCALER PUIGORIOL

PRIOR SKILLS
Fundamentals of Fluid Mechanics

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:
1. SELF-DIRECTED LEARNING. Detecting gaps in one's knowledge and overcoming them through critical self-appraisal. Choosing the best path for broadening one's knowledge.

TEACHING METHODOLOGY
This course will consist of explanation lectures and sessions for problem solving. The explanation lectures will be used by the teacher to expose and comment with the students the theoretical concepts and equations. The lectures devoted to problem solving will require the student to participate actively and the teacher will provide orientation and support to solve the practical cases.

LEARNING OBJECTIVES OF THE SUBJECT

The objective of the course is that the student learns how to apply in an organized and systematic way the fundamentals that determine the fluid transport inside pipes. With such competences the student must be able to set out and/or resolve a liquid or gas flow system through a pipe net with different complexity. In particular, the student must:
- Identify the type of flow under study and its physical characteristics.
- Understand the equations that govern the pipe flow.
- Solve mathematically permanent incompressible pipe flow.
- Solve transient flow. Predict the water hammer.
- Solve mathematically permanent compressible pipe flow.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>67,5</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>45,0</td>
<td>40.00</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h
CONTENTS

- FLUID MECHANICS REVIEW

Full-or-part-time: 15h
Theory classes: 3h
Practical classes: 3h
Self study : 9h

- INCOMPRESSIBLE PIPE FLOW

Full-or-part-time: 22h 30m
Theory classes: 4h 30m
Practical classes: 4h 30m
Self study : 13h 30m

- TRANSIENT FLOW. WATER HAMMER

Full-or-part-time: 37h 30m
Theory classes: 7h 30m
Practical classes: 7h 30m
Self study : 22h 30m

- COMPRESSIBLE PIPE FLOW

Full-or-part-time: 37h 30m
Theory classes: 7h 30m
Practical classes: 7h 30m
Self study : 22h 30m

ACTIVITIES

SOLUTION OF WRITING EXERCISES LESSON 1

Full-or-part-time: 6h
Self study: 6h

SOLUTION OF WRITING EXERCISES LESSON 2

Full-or-part-time: 9h
Self study: 9h

SOLUTION OF WRITING EXERCISES LESSON 3

Full-or-part-time: 10h
Self study: 10h
SOLUTION OF WRITING EXERCISES LESSON 4

Full-or-part-time: 10h
Self study: 10h

COMPUTATIONAL SIMULATION CASE 1

Full-or-part-time: 5h
Guided activities: 5h

COMPUTATIONAL SIMULATION CASE 2

Full-or-part-time: 5h
Guided activities: 5h

ATTENDANCE AND PARTICIPATION AT THE CLASSROOM

Full-or-part-time: 22h 30m
Practical classes: 22h 30m

GRADING SYSTEM

Final mark = 0.25*final exam mark + 0.25*solved exercises mark + 0.25*team work mark + 0.25*classroom involvement mark

EXAMINATION RULES.

To pass, it is compulsory to obtain a result above zero in at least three of the four partial marks.

BIBLIOGRAPHY

Basic:

Complementary:
9780071241366.