Course guides
240635 - 240635 - Extension in Strength of Materials

Unit in charge: Barcelona School of Industrial Engineering
Teaching unit: 737 - RMEE - Department of Strength of Materials and Structural Engineering.

Degree: BACHELOR’S DEGREE IN INDUSTRIAL TECHNOLOGY ENGINEERING (Syllabus 2010). (Optional subject).
BACHELOR’S DEGREE IN MATERIALS ENGINEERING (Syllabus 2010). (Optional subject).
BACHELOR’S DEGREE IN CHEMICAL ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2020 ECTS Credits: 4.5 Languages: Catalan, Spanish

LECTURER
Coordinating lecturer: Francesc Roure Fernández

Others:

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES
Specific:
3. Knowledge and capacities to apply fundaments of materials’ elasticity and resistance to the behaviour of real solids.
2. Knowledge and capacities to calculate, design and test machines.
1. Knowledge and capacity to calculate and design industrial structures and buildings.

TEACHING METHODOLOGY
Theory and problems are combined in the classes: after presenting and developing a theme, problems related to it are presented and resolved.
Each student will have to realize 3 practical sessions in the laboratory (2 h each session).
Each student will have to do a work, with a team, that will be written and orally presented

LEARNING OBJECTIVES OF THE SUBJECT
Extending the knowledge in Strength of Materials to new type of parts and new material behaviours. After finishing the course the student has to be able to:
- Apply the general theory of bending to special sections, parts and cases.
- Use the Linear Elasticity Theory in polar and cylindrical coordinates to analyze axisymmetric components.
- Verify, calculate and optimize parts and components subjected to fatigue.
- Analyse and verify components made with composites (fibre reinforced resins).
- Establishe the plastic behaviour of beams and bars.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>45,0</td>
<td>40.00</td>
</tr>
<tr>
<td>Self study</td>
<td>67,5</td>
<td>60.00</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h
CONTENTS

1.- Bending: Special cases

Description:
Sections made of different materials. Reinforced concrete sections. Pieces with small radius of curvature.

Full-or-part-time: 12h
Theory classes: 6h
Self study: 6h

2.- Axisymmetric components

Description:
Linear Elasticity in polar and cylindrical coordinates. Analysis of discs. Analysis of pipes. Analysis of tanks subjected to internal pressure.

Full-or-part-time: 18h
Theory classes: 9h
Self study: 9h

3.- Fatigue

Description:

Full-or-part-time: 18h
Theory classes: 9h
Self study: 9h

4.- Anisotropic materials: Composites

Description:

Full-or-part-time: 18h
Theory classes: 9h
Self study: 9h

5.- Plasticity

Description:

Full-or-part-time: 12h
Theory classes: 6h
Self study: 6h
- **Laboratory**

Description:
There will be 3 sessions in the Laboratory (2 h each):
- Analysis and measurement of stresses and displacements in a sandwich panel subjected to bending.
- Analysis and measurement of stresses in a tank subjected to internal pressure.
- Plastic bending of a metallic beam.

Full-or-part-time: 8h
Laboratory classes: 6h
Self study : 2h

GRADING SYSTEM

Final Mark = 0.6 NE + 0.1 NL + 0.3 NTR

NE: Final Exam Mark
NL: Laboratory Mark (3 points attendance, 7 points written reports)
NTR: Work Mark

EXAMINATION RULES.

Will be published before each test

BIBLIOGRAPHY

Basic: