DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
14392. Ability to solve mathematical problems that may arise in engineering. Ability to apply knowledge about: linear algebra; geometry; differential geometry; differential and integral calculation; differential equations and partial derivatives; numerical methods; numerical algorithmic; Statistics and optimization. (Basic training module)
14393. Capacity for spatial vision and knowledge of graphic representation techniques, both by traditional methods of metric geometry and descriptive geometry, as well as by computer-aided design applications. (Basic training module)
14394. Basic knowledge about the use and programming of computers, operating systems, databases and computer programs with engineering application. (Basic training module)

TEACHING METHODOLOGY

The course consists of 2 hours per week of classroom activity (large size group) and 1.6 hours weekly with half the students (medium size group).

The 2 hours in the large size groups are devoted to theoretical lectures, in which the teacher presents the basic concepts and topics of the subject, shows examples and solves exercises.

The 1.6 hours in the medium size groups is devoted to solving practical problems with greater interaction with the students. The objective of these practical exercises is to consolidate the general and specific learning objectives.

The rest of weekly hours devoted to laboratory practice.

Support material in the form of a detailed teaching plan is provided using the virtual campus ATENEA: content, program of learning and assessment activities conducted and literature.
LEARNING OBJECTIVES OF THE SUBJECT

Knowledge of metric plane geometry. Descriptive geometry I (basic fundamentals and dihedral operability). Representation systems and graphic design through specific programs of civil engineering.

1. Ability to solve problems requiring the use of plane and spatial geometry.
2. Ability to produce contour maps of a unique engineering structure.
3. Ability to use computer-aided design programs, in simple problems. Ability to use the conical system to represent a unique engineering structure.

Spatial vision skills and knowledge of traditional graphic representation techniques. Knowledge of metric geometry. Knowledge of the basic tools of metric geometry: constructions and demonstrations with ruler and compass. Knowledge of dimensioned plans. Knowledge of technical drawing. Conical system knowledge. CAD.

1.- Development of the capacity for abstraction. 2.- To give solution to the problems of the geometry of the space by means of operations carried out on a plane. 3.- To accurately represent shapes and bodies in 3D in space on two-dimensional projection planes. 4.- Be able to deduce and transfer to the three dimensions the exact description of the bodies represented in 2D by means of the dihedral representation system and everything that necessarily follows from their shapes and their relative positions with respect to the projection planes. 5.- To be able to represent on the plane the exact projections of shapes and bodies in space, using the three basic projection planes of the dihedral system (elevation, plan and profile). 6.- Development of the student's spatial capacity through a process of spatial maturity, which allows him to reconstruct in the mind or materially the forms given by his flat representations (projections), to put his creative faculty at the service of the future civil engineer where the Geometry and spatial capacity play a vital role in the design of civil technical projects. In this way, knowledge of the subject in its development and spatial maturity will confer on the engineer a double aspect: on the one hand, he must become familiar with the management and representation of geometric shapes whose proper use may be considered a civil project, and on the other part will provide him with the technique that will allow him to correctly represent the forms created by him in such a way that they can be correctly interpreted from his representation by those who have to be in charge of their real construction and materialization.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours small group</td>
<td>6,0</td>
<td>4.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Self study</td>
<td>84,0</td>
<td>56.00</td>
</tr>
<tr>
<td>Hours medium group</td>
<td>24,0</td>
<td>16.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>6,0</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h
CONTENTS

GM - Geometry

Description:
- Bisector line of the segment
- Bisector line of the angle
- Proportionality, Thales theorem, scale factor
- Homothetic transform (applied to segments and circumferences)
- Conical curves
- Exercises related with the previous topics

Definition, basic properties and representation of:
- Translation
- Axial symmetry
- Rotation

Product of movements

Exercises

Study the following topics related with triangles:
- Sum of internal angles.
- Definitions and properties of: circumcentre, orthocentre, incentre/excentres, centroid
- Similarity of triangles, leg's / height / pythagoras / generalised pythagoras theorems
- Exercises on the basic construction of triangles
- Definition of the regular polygons
- Property of the sum of interior/exterior angles
- Definition and classification of quadrilaterals
- Basic properties of the parallelogram and trapezium
- Exercises on the construction of basic quadrilaterals by means of locus intersection, triangles, or movements
- Definitions and basic properties of a circumference.
- Properties of the chords.
- Tangent lines
- Angles on the circumference: central, inscribed, semi-inscribed, internal, external. And their properties and relations.
- Arco capaz.
- Exercises on tangent
- Exercises with the circumference angles and arco capaz

Specific objectives:
1.- Learn to make the proposed geometric constructions and understand their basic properties. 2.- Put into practice the theoretical knowledge. 3.- Acquire skills when drawing two-dimensional geometric figures. 4.- Become familiar with the use of drawing tools such as the compass or curve templates (and the like). 5.- Learn to solve simple geometric problems.

Learn basic concepts of movements, properties, representation and composition.
Learn basic properties of triangles and solve basic exercises.
Learn properties of polygons and solve basic exercises
Know basic properties of the circumference and its angles

Full-or-part-time: 24h
 Theory classes: 10h
 Self study: 14h
DI - Orthographic projection

Description:

Definition of orthographic projection (American and European).
Exercises related to the orthographic projection. In general, a projection direction and a figure will be given and the view of the figure demanded. Exercises where some transformation is applied to the figure (rotations) will be considered.

Specific objectives:

1.1.- Understand the concept of "projection on a plane". 1.2.- Know various ways of making these projections. 1.3.- Know the dihedral projection system. 1.4.- Become familiar with the concepts of: plan, elevation, profile. 1.5.- Know how to correctly position each of the views or projections in both the American and European systems. 1.6.- Differentiate between edge / face and hidden face.

1) Learn to make orthographic projections of a piece; 2) Ability to see a piece that moves in space (imagine the piece in the final position when the initial position and a movement are defined); 3) To be familiar with different figure typologies. Pieces with curved faces will be considered; 4) Being able to imagine a sectioned piece.

Full-or-part-time: 9h 36m

- Theory classes: 1h
- Practical classes: 3h
- Self study : 5h 36m

LLI - Free-hand drawing

Description:

Basic theoretical indications on free prospects. Free view and interpretation of pieces. Opposite view and perspectives from a certain point of view. Basic points: - Basic rules of freehand drawing: parallelism, proportionality - Basic tips for making a freehand drawing: orientation of the appropriate axes, wire structures etc - Drawing of simple figures - Concept of elevation direction vs. observer's point of view - Drawing figures from a certain point of view. - 8 positions in space -Opposite view - Figures with curved faces - Exercises

Session dedicated to solving the unit's own exercises, and exam problems from previous courses.

Specific objectives:

Assimilate the concept of one-piece free perspective and learn the basic tips. 1.1.- Acquire enough spatial vision to imagine a piece, given its dihedral projections 1.2.- Acquire enough freehand drawing skills to make an intelligible drawing 1.3.- Be able to draw a free perspective respecting aspects such as parallelism and proportionality. 1.4.- Ability to imagine the opposite view of a piece, known its direct view. 1.5.- Ability to imagine what an observer located at any point in space sees.

Full-or-part-time: 9h 36m

- Theory classes: 1h
- Practical classes: 3h
- Self study : 5h 36m

GD - Introduction to the descriptive geometry

Description:

GD_1. System elements; The point.

1.1 System elements definition.
1.2 Point representation.
1.3 Coordinate axes.
1.4 Identification of a point by its coordinates.
1.5 Different positions of the point
- Point at 1st dihedral.
- Point at 2nd dihedral.
- Point at 3rd dihedral.
- Point at 4 ° dihedral.
- Point in the 1st bisector.
- Point in the 2nd bisector.
- Point in the vertical plane.
- Point in the horizontal plane.
- Point at the ground line.

GD_2. The straight line.

2.1 Stright line's representation.
2.2 Point contained in a line.
2.3 Traces of a line.
2.4 Line defined by two points.
2.5 Intersection of two lines.
2.6 Parallel lines. Parallel stright line by a point to another one.
2.7 Relative straight line's positions.
- Horizontal straight line.
- Front straight line.
- Parallel strainght line to the ground line.
- Vertical straight line.
- Edge straight line.
- Straight line contained in the 1st bisector.
- Straight line contained in the 2nd bisector.
2.8 straight line's views: hidden and views parts.
2.9 Straight line profile.
2.10 Profile plane abatement and profile plane disabatement.
2.11 Straight profile lines' intersection.
2.12 Parallel line to a profile lines passing by a determinate point.

GD_3. The plane.

3.1 Plane's representation.
3.2 Plane's points. Horizontal projection of a known point vertical projection or vice versa.
3.3 Straight line contained in a plane.
3.4 Straight lines individuals contained in a plane.
- Front straight line.
- Horizontal straight line.
- Maximum slope straight line.
- Maximum tilt straight line.
3.5 Plane's particular positions.
- Vertical plane.
- Edge plane.
- Flat plane.
- Horizontal plane.
- Frontal plane.
- Parallel plane to the ground line.
- A plane that passes through the ground line.
- Perpendicular plane to the 1st bisector.
- Perpendicular plane to the 2nd bisector.
3.6 Traces of a plane defined by two lines.
3.7 Types of planes defined by a straight line.
- Vertical plane.
- Edge Plane.
- Parallel plane to the ground line.
- Perpendicular plane to the 1st bisector.
- Perpendicular plane to the 2nd bisector.

GD_4. Planes' and lines' intersections.

4.1 Two planes' intersection. General case.
4.2 Two planes' intersection. Particular cases:
- Plans with traces cutting out of the picture.
- Plans without trace, defined by two lines.
- Plans with the four traces coinciding with the ground line.
- One of the planes passing through the ground line.

4.3 Planes and straight lines' intersection.
- Plane defined by its traces.
- Plane defined by two straight lines.
- Intersection of a line with a flat figure.

4.4 Relative position of crossing straight lines.

4.5 Views and hidden parts of an opaque plane and straight line's intersection.

GD.5. Parallelism and perpendicularity

5.1 Parallel planes.
5.2 Parallel straight line to a plane by a point.
- General case.
- Plane parallel to the ground line.
- Plane passing through the ground line.
- Parallel straight line to a plane by a point.
- Parallel plane to two given straight lines by a point.
- Parallel straight line by a point to a plane which is built by a given straight line.
- Straight line supported in two ones' by a point.
- Straight line supported in two ones' by a given direction.

5.3 Theorem of the three perpendicular.
5.4 Perpendicular line to a plane passing by a point:
- General case.
- Perpendicular plane to the ground or passing through the ground line.
- Perpendicular plane to the bisectors.
5.5 Perpendicular plane to

Specific objectives:

1.1.- Be able to deduce and transfer from three-dimensional space to two-dimensional space using the dihedral system, and restore from dihedral projections to three-dimensional space. 1.2.- Represent three-dimensional solids and their basic geometric elements that make it up: points, lines and planes. 1.3.- Know the basic positions of the line and the plane. 1.4.- Determine the relative positions between the different geometric elements: points, lines and planes. 1.5.- Determine the conditions of membership of said elements. 1.6.- Learn to use the terminology of the dihedral system with fluency and solvency.

2.1.- Solve using different operating methods of the dihedral system intersections between straight-line, straight-plane and plane-plane. 2.2.- Learn to determine the visibility between the straight-straight, straight-plane and plane-plane dualities.

3.3.- Construction using operating methods of the subtraction dihedral system and parallel planes between them and others.

3.3.- Understanding and using the theorem of the three perpendiculars for their use in the construction of perpendicular lines between them, perpendicular lines with planes, and perpendicular planes between them.

4.1.- Learn the procedures of each of the auxiliary operating methods (abatement, change of plane and turns) of the dihedral system. 4.2.- Assess the importance of mastering the different auxiliary methods of the dihedral system, especially of the abatement, since it constitutes the most used way of descriptive geometry to solve problems related to distances, true magnitudes, angles, etc.

5.1.- Obtain the true magnitude of a segment or flat figure and relate it to the concept of distance. 5.2.- Finding through different operational processes the true magnitude of the distances between points, lines and planes. True magnitude of a plane figure and the true magnitude of an angle, slope of a line and a plane. 5.3.- Correctly apply the different operating systems for the construction of flat figures in a desired position.

Full-or-part-time: 32h 24m

Theory classes: 10h 30m
Practical classes: 3h
Self study: 18h 54m
PA - Contour maps

Description:
Definition of the dimensioned plane system. - Representation of points, lines and planes. - Basic operations: Parallelism, perpendicularity and distances

Representation and concept of: - Use of scales. Graphic scale. - Concept of contour (horizontal plane) - Geometric Surfaces - Point curves in space - Definition of the basic elements that are part of a roof and description of what it is to solve the problem of a roof with bounded planes. Application of the concept of scale and equidistance to dimensioned plane problems. - Initial cover exercises.

Session dedicated to solving the unit's own exercises, and exam problems from previous courses
-Representation of land -Characteristic elements of the orography -Long profile. Constant slope path and maximum slope path. - Cross section: concept of cut and fill. -Transition surfaces: cases with zero slope contours -Platform exercises

Session dedicated to solving the unit's own exercises, and exam problems from previous courses
Definition of linear work. Cut and fill concepts. Definition of the type of surface that is formed in the cuttings and embankments of a linear work depending on the type of plan layout (straight, circular or curved) and whether it is a section with zero or constant slope.

Session dedicated to solving the unit's own exercises, and exam problems from previous courses

Specific objectives:
1.1.- Learn the basic principles of the Bounded Plans. 1.2.- Know how points and lines are represented. 1.3.- Acquire the most basic skills to carry out small operations related to points and lines (example: placing a point on a line; determining the distance between two points). 1.4.- Know how a plane is represented. 1.5.- Become familiar with concepts such as "maximum slope line", "trace of the plane", ... 1.6.- Learn to perform geometric operations that include planes (intersection of two planes, draw a line contained in a plane, ... 1.7.- Know how to draw planes and lines that are parallel and perpendicular 1.8.- Be able to do other three-dimensional geometric operations such as intersecting a line with a plane, collapsing planes, drawing planes and lines that form a given angle with another plane etc.

2.1.- Learn how to represent basic geometric surfaces (spheres, cones, cylinders) using dimensioned planes. 2.2.- Learn the name of basic elements of a roof. 2.3.- Understand what the definition of a roof consists of through dimensioned plans. 2.4.- Be clear about what the problem data may be and what results can be asked of us. 2.5.- Know how to determine a roof (level and intersection curves of each of the parts that form it), fixed: the outer contour, the type of surface that forms it and its geometric characteristics, the scale of the exercise and the equidistance of job. 2.6.-Know how to determine a roof (level lines and intersection of each of the parts that form it), fixed: the outer contour, the type of surface that forms it and its geometric characteristics, the scale of the exercise and the equidistance of job. 3.1.- Know the concept of platform. 3.2.- Know the concept of "cut" and "embankment" and in which cases we find each one of them. 3.3.- Know how to determine the surfaces generated in the construction of a platform as well as its intersection with the ground. Geometric interpretation of the results obtained. 4.1.- Know the concept of linear work. 4.2.- Know the concept of "clearing" and "embankment" and in which cases we find each of them. 4.3.- Know how to determine the type of cut or embankment surface that we will have to draw based on the plan layout or elevation of a linear work. 4.4.- Learn the "profile method".

4.5.- Know how to determine the surfaces generated in the construction of a platform or a linear work as well as its intersection with the ground. Geometric interpretation of the results obtained

Full-or-part-time: 19h 12m
Theory classes: 5h
Practical classes: 3h
Self study : 11h 12m
CAD - Laboratory of CAD (vectorial software)

Description:
1. Introduction. Description of the system. 2.- Basic tools for 2D design: drawing. - Exercises
3.- Basic tools for 2D design: editing. - Exercises
4.- Management tools: layers, properties and elements. - Exercises
5.- Blocks and attributes. 6.- Dimensions and text. - Exercises
7.- Paper space configuration. Windows, views and scales. 8.- Configuration for printing plans. - Application to exercises
9.- Introduction to 3D space: work plans and views. - Exercises
10.- Creation of primitive solids. 11.- Boolean operations with solids. - Exercises
12.- Editing and transformations of 3D solids. - Exercises
13.- Views and perspectives with 3D solids - Exercises

Specific objectives:
The objectives of the CAD laboratory are: - Preparation of students for the use of computer instruments as a tool in solving geometric problems. - Identify and represent through the system of multiple, axonometric and conical views, the characteristics of bodies, surfaces and objects, according to their location in space. - Know, identify, represent and use the known surfaces and volumes in geometry using proprietary engineering software applied to projects. - Application of current computer tools to graphic representation in the field of Civil Engineering through the use of vector-assisted design programs. - Introduction of the student in the rational use of computing as a base work, under the "interface" of the operating systems, and the application of specific vector software as a 2D and 3D drawing tool. Always under the conceptual guideline of the geometric structuring of the projects to be represented and the help of informatics in the field of descriptive geometry and technical drawing.

Full-or-part-time: 27h 36m
Theory classes: 1h 30m
Practical classes: 10h
Self study: 16h 06m

EV - Evaluation

Full-or-part-time: 14h 23m
Laboratory classes: 6h
Self study: 8h 23m

CL - Class activities

Description:
Session dedicated to resolving doubts openly. It will typically be held on the days before the assessments. Completion of practical exercises in class. Performing virtual tests.

Specific objectives:
Answer doubts and solve exercises
Complement the continuous assessment note. Fix theoretical concepts. Receive information before the partial assessments.

Full-or-part-time: 4h 48m
Practical classes: 2h
Self study: 2h 48m
H - Holiday days

Description:
Course days that are affected by a public holiday

Full-or-part-time: 2h 24m
- Theory classes: 1h
- Self study : 1h 24m

GRADING SYSTEM

The mark of the course is obtained from the ratings of continuous assessment and their corresponding laboratories and/or classroom computers.

Continuous assessment consist in several activities, both individually and in group, of additive and training characteristics, carried out during the year (both in and out of the classroom).

The teachings of the laboratory grade is the average in such activities.

The evaluation tests consist of a part with questions about concepts associated with the learning objectives of the course with regard to knowledge or understanding, and a part with a set of application exercises.

EXAMINATION RULES.

If any of the continuous assessment activities are not carried out in the scheduled period, it will be considered as a zero score.

BIBLIOGRAPHY

Basic:
- Rodríguez de Abajo, F.J.; Álvarez Bengoa, V. Curso de dibujo geométrico y croquización: primer curso de escuelas de ingeniería. 12a ed. San Sebastian: Donostiarr, 1992. ISBN 847063173X.