Course guides
2500036 - GECAPAUTTD - Machine Learning and Data Science

Unit in charge: Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering.
Degree: BACHELOR’S DEGREE IN CIVIL ENGINEERING (Syllabus 2020). (Optional subject).
Academic year: 2021 ECTS Credits: 4.5 Languages: English

LECTURER

Coordinating lecturer: IRENE ARIAS VICENTE
Others: IRENE ARIAS VICENTE, PEDRO DIEZ MEJIA, ALBA MUJIXI BALLONGA, ALEJANDRO TORRES SANCHEZ

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
14406. Ability to analyze the problem of safety and health in construction sites. (Common module to the Civil branch)
14410. Knowledge of the typology and calculation bases of prefabricated elements and their application in manufacturing processes. (Specific technology module: Civil Construction)
14411. Knowledge about the project, calculation, construction and maintenance of building works in terms of structure, finishes, facilities and own equipment. (Specific technology module: Civil Construction)
14413. Capacity for the construction and conservation of roads, as well as for the dimensioning, the project and the elements that make up the basic road equipment. (Specific technology module: Civil Construction)
14414. Capacity for the construction and conservation of railway lines with knowledge to apply specific technical regulations and differentiating the characteristics of the mobile material. (Specific technology module: Civil Construction)
14415. Ability to apply construction procedures, construction machinery and construction planning techniques. (Specific technology module: Civil Construction)
14416. Capacity for the construction of geotechnical works. (Specific technology module: Civil Construction)

TEACHING METHODOLOGY

The course consists of 1.5 hours per week of classroom activity (large size group) and 1.5 hours weekly with half the students (medium size group).

The 1.5 hours in the large size groups are devoted to theoretical lectures, in which the teacher presents the basic concepts and topics of the subject, shows examples and solves exercises.

The 1.5 hours in the medium size groups is devoted to solving practical problems with greater interaction with the students. The objective of these practical exercises is to consolidate the general and specific learning objectives.

Support material in the form of a detailed teaching plan is provided using the virtual campus ATENEA: content, program of learning and assessment activities conducted and literature.
LEARNING OBJECTIVES OF THE SUBJECT

Knowledge about machine learning algorithms and data science.

1. Understand and apply the main machine learning algorithms.
2. Understand the life cycle phases of data science: data mining processes.

Supervised (regression and classification), unsupervised (clustering) and semi-supervised learning. Linear regression methods (regression error functions, least squares, notion of regularization, generalized regression). Linear methods by classification (error functions by classification, Bayesian classifiers). Hierarchical methods, general construction of decision trees. Neural networks. Kernel-based methods. Kernelized regularized linear regression, basic kernel functions. Explore the life cycle of data science: questioning, data collection, analysis, visualization, statistical inference, prediction, and decision making. It focuses on quantitative critical thinking and key principles and techniques: languages to transform, query, and analyze data; algorithms for machine learning methods: regression, classification and grouping; principles of informational visualization; measurement and prediction error; and techniques for scalable data processing.

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours medium group</td>
<td>22,5</td>
<td>20.00</td>
</tr>
<tr>
<td>Hours large group</td>
<td>22,5</td>
<td>20.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>4,5</td>
<td>4.00</td>
</tr>
<tr>
<td>Self study</td>
<td>63,0</td>
<td>56.00</td>
</tr>
</tbody>
</table>

Total learning time: 112.5 h

 CONTENTS

Introduction to machine learning and theory of decision making

Description:

Full-or-part-time: 9h 36m
Theory classes: 2h
Practical classes: 2h
Self study : 5h 36m

Unsupervised learning

Description:
Principal component analysis
Principal Component Analysis
Principal component analysis

Full-or-part-time: 24h
Theory classes: 4h
Practical classes: 4h
Laboratory classes: 2h
Self study : 14h
Bayesian Inference

Description:
Bayesian model update. Prior and posterior.

Full-or-part-time: 9h 36m
Theory classes: 2h
Laboratory classes: 2h
Self study : 5h 36m

Supervised learning

Description:
Least squares, error functions for regression, probabilistic approach, sum of squares error as maximum likelihood, model selection, the curse of dimensionality, generalized regression.

Linear models for regression
Discriminant functions, connection to maximum likelihood. Model selection. Bayesian logistic regression.
Linear classification models

Full-or-part-time: 19h 12m
Theory classes: 4h
Laboratory classes: 4h
Self study : 11h 12m

Artificial Neural Networks

Description:
Basic concepts of ANN
The multilayer perceptron
Network training
Regularization in ANN

Full-or-part-time: 28h 47m
Theory classes: 4h
Laboratory classes: 8h
Self study : 16h 47m

Simulation

Description:
Monte-Carlo Method and Stochastic Finite elements
Assignment of Stochastic finite elements

Full-or-part-time: 7h 11m
Theory classes: 1h
Laboratory classes: 2h
Self study : 4h 11m
Course Project Presentations

Full-or-part-time: 9h 36m
Laboratory classes: 4h
Self study: 5h 36m

GRADING SYSTEM

The mark of the course is obtained from the ratings of continuous assessment and their corresponding laboratories and/or classroom computers.

Continuous assessment consist in several activities, both individually and in group, of additive and training characteristics, carried out during the year (both in and out of the classroom).

The teachings of the laboratory grade is the average in such activities.

The evaluation tests consist of a part with questions about concepts associated with the learning objectives of the course with regard to knowledge or understanding, and a part with a set of application exercises.

EXAMINATION RULES.

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

BIBLIOGRAPHY

Basic: