250101 - ALGGEOM - Algebra and Geometry

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2018
Degree: BACHELOR’S DEGREE IN CIVIL ENGINEERING (Syllabus 2010). (Teaching unit Compulsory) BACHELOR’S DEGREE IN CIVIL ENGINEERING (Syllabus 2017). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff

Coordinator: MARIA ANGELES PUIGVI BURNIOL
Others: NAPOLEON ANENTO MORENO, MARIA ANGELES PUIGVI BURNIOL

Opening hours

Timetable: Mariàngels Puigvi: Wednesday from 10:00 to 14:00
Sergi Nadal: Thursday from 10:00 to 14:00

Degree competences to which the subject contributes

Specific:
3048. Ability to solve the types of mathematical problems that may arise in engineering. Ability to apply knowledge of: linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and partial derivatives; numerical methods; numerical algorithms; statistics and optimisation.

Transversal:
591. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 1. Planning oral communication, answering questions properly and writing straightforward texts that are spelt correctly and are grammatically coherent.
597. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections, premises and services that are available for designing and executing simple searches that are suited to the topic.
600. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with recommended information sources according to the guidelines set by lecturers.

Teaching methodology

The course consists of 4 hours a week of classes in the classroom.

We spend 2.5 hours in lectures, in which the teacher explains the concepts and basic materials of the subject, presents examples and exercises.

1.5 hours is devoted to solving problems with greater interaction with students. Exercises are conducted to consolidate the general and specific learning objectives.

Support materials used in the form of detailed teaching plan by algweb.net/2.0/ page: content, programming and evaluation activities directed learning and literature.

Learning objectives of the subject

The course consists of 4 hours a week of classes in the classroom.

We spend 2.5 hours in lectures, in which the teacher explains the concepts and basic materials of the subject, presents examples and exercises.

1.5 hours is devoted to solving problems with greater interaction with students. Exercises are conducted to consolidate the general and specific learning objectives.

Support materials used in the form of detailed teaching plan by algweb.net/2.0/ page: content, programming and evaluation activities directed learning and literature.
250101 - ALGGEOM - Algebra and Geometry

Students will acquire a general understanding of linear algebra, analytical geometry in two and three dimensions, and methods for solving linear problems encountered in engineering. They will also develop the skills to analyse and solve mathematical problems in engineering that involve these concepts.

On completion of the course, students will have acquired the ability to:
1. Interpret vector spaces;
2. Solve linear equation systems manually and using basic software;
3. Produce geometric interpretations of concepts in vector calculus;
4. Use algebraic methods applicable to vectors, matrices, operators and tensors, including basic operations, reduction to canonical form and change of base.

Logic, set theory and algebraic structures; Vector spaces, including matrix algebra; Systems of linear equations, linear applications and bilinear forms and the basic algorithms used to solve them; Euclidean spaces; Determinants and their applications, in particular for calculating areas and volumes; Analytical geometry; Linear operators: Endomorphisms and spectral theorems, affine Euclidean spaces, eigenvalues and eigenvectors; Tensor algebra: Basic operations, change of base and tensor calculus

Delve into the mechanisms of logical reasoning. Studying methods of solving linear problems that appear frequently in engineering. Submit items tensor algebra and analytic geometry.

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 150h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>31h</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>16h</td>
</tr>
<tr>
<td>Laboratory classes:</td>
<td>13h</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>6h</td>
</tr>
<tr>
<td>Self study:</td>
<td>84h</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes:</td>
<td>31h</td>
</tr>
<tr>
<td></td>
<td>Practical classes:</td>
<td>16h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes:</td>
<td>13h</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>6h</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>84h</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes:</td>
<td>20.67%</td>
</tr>
<tr>
<td></td>
<td>Practical classes:</td>
<td>10.67%</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes:</td>
<td>8.67%</td>
</tr>
<tr>
<td></td>
<td>Guided activities:</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Content

Unit 1: Linear maps

<table>
<thead>
<tr>
<th>Learning time: 16h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 3h</td>
</tr>
<tr>
<td>Self study: 9h 48m</td>
</tr>
</tbody>
</table>

Description:

The aim is to solve some problems on linear maps defined over infinite dimensional vector spaces, although focus shall be primarily on the finite dimensional case. Using the associated matrix and the theory of vector spaces and linear systems, basis for the kernel and image shall be obtained.

Problems on the composition of linear maps. Computation of the matrix associated with the inverse map of an isomorphism. Base of the dual vector space.

Specific objectives:
Introduce the fundamental concepts and relate them to the mathematical contents covered in other courses. Acquaint the student with vectors other than the familiar examples deriving from physical applications. Relate the injectivity and surjectivity of a linear map to its kernel and image.

Relate new concepts to the student’s general background: vector spaces, matrix properties, resolution of linear systems, rang of a vector system and implicit equations of a subspace.

Justify the correspondence between invertible and bijective linear maps. Relate the composition of linear maps to the product of their associated matrices. Introduce the concept of dual space. Computation of basis and analysis of their properties. Highlight the theory of base change, which shall be paramount in subsequent units: pay special attention to the relation between vector components in different basis and base vectors.

Relate the concepts covered in this unit to familiar matrix properties. Focus on the dual vector space and on the computation of basis. Draw the student’s attention to geometric applications.
Unit 2: Euclidean space

Learning time: 28h 47m
 Theory classes: 6h
 Practical classes: 2h
 Laboratory classes: 4h
 Self study: 16h 47m

Description:

Specific objectives:
To develop the properties of bilinear forms, especially the symmetrical, preparing its subsequent application in Calculus. Working properties of symmetric bilinear forms using the method of elementary row operations they already know. Properties of operations with complex numbers. Present the definitions and general properties and continually interpret in real Euclidean space of three dimensions with which the student is familiar. It aims at an abstract knowledge of Euclidean space applications are working especially geometry. Present and demonstrate the fundamental properties. Interpreting real Euclidean space of three dimensions. Justify geometric properties. Acquiring skill in the demonstration and use of abstract properties. Operate with complex numbers, general properties apply to real three-dimensional Euclidean space.
Unit 3: Determinants

Description:
Examples of determinants calculated by reducing the matrix to triangular form.
Determinants and matrix inversion. Cramer's rule.
Exercises to determine if a matrix is invertible, and if so get its inverse. Solving systems of linear equations using Cramer’s Rule.

Specific objectives:
Define the alternating multilinear forms, of which the determinant is a special case. From its definition shows some basic properties, all without having to explain the development of the determinant. Calculate the determinant of a matrix by applying numerical row elementary operations to reduce it to the triangular shape. Practicing proper elementary row operations and become aware of the possible numerical programming method. After introducing the basic properties of permutations make explicit the crucial and its development. Using the properties of alternating multilinear forms of showing that the determinant of a matrix is the product of determinants. Cofactor matrix is defined and used in the calculation of the inverse matrix. Working this second method to invert a matrix, as already know to transform it into reduced row echelon form by row.
Provide the student with the tools they need in calculus, and to justify the existence of polynomial interpolators.

Unit 4: Endomorphism and matrix reduction

Description:
Unit 5: Operators and spectral theorems.

Description:
- Problems of normal operators and properties of normal matrices.
- Canonical form of real nonsymmetric normal operators. Isometries. Classification of orthogonal operators in three dimensional space.
- Problems of real normal operators.

Learning time: 38h 24m
- Theory classes: 7h
- Practical classes: 4h
- Laboratory classes: 5h
- Self study : 22h 24m

Unit 6: Tensor algebra.

Description:
- Cartesian tensors. Tensor of inertia.
- Tensors problems and their physical applications.

Learning time: 26h 24m
- Theory classes: 5h
- Practical classes: 2h
- Laboratory classes: 4h
- Self study : 15h 24m
Qualification system

The final grade is obtained from partial qualifications follows:

E0: continuous assessment activities
E1: Test of the units developed on the first half of the academic term
E2: Test of the units developed on the second half of the academic term
E3: Global test of the course

The student has to choose whether to take test E2 or E3

NF1=0.3E0+0.35E1+0.35E2
NF2=0.3E0+0.7E3

Final Mark = max {NF1, NF2}

The exams consist of a part with questions on concepts associated with learning objectives in terms of subject knowledge or understanding, application and a set of exercises.

Criteria for re-evaluation qualification and eligibility: Students that failed the ordinary evaluation and have regularly attended all evaluation tests will have the opportunity of carrying out a re-evaluation test during the period specified in the academic calendar. Students who have already passed the test or were qualified as non-attending will not be admitted to the re-evaluation test. The maximum mark for the re-evaluation exam will be five over ten (5.0). The non-attendance of a student to the re-evaluation test, in the date specified will not grant access to further re-evaluation tests. Students unable to attend any of the continuous assessment tests due to certifiable force majeure will be ensured extraordinary evaluation periods.

These tests must be authorized by the corresponding Head of Studies, at the request of the professor responsible for the course, and will be carried out within the corresponding academic period.

Regulations for carrying out activities

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

Bibliography

Basic: