250201 - ALGLIN - Linear Algebra

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2017
Degree: BACHELOR'S DEGREE IN PUBLIC WORKS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 6 Teaching languages: Catalan, Spanish

Teaching staff

Coordinator: NAPOLEON ANENTO MORENO
Others: NAPOLEON ANENTO MORENO, MARIA ANGELES PUIGVI BURNIOL

Opening hours

Timetable: Hours to be arranged with faculty.

Degree competences to which the subject contributes

Specific:
3096. Ability to solve the types of mathematical problems that may arise in engineering. Ability to apply knowledge of:
linear algebra; geometry; differential geometry; differential and integral calculus; differential equations and partial
derivatives; numerical methods; numerical algorithms; statistics and optimisation.

Transversal:
591. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 1. Planning oral communication, answering questions
properly and writing straightforward texts that are spelt correctly and are grammatically coherent.
597. EFFECTIVE USE OF INFORMATION RESOURCES - Level 1. Identifying information needs. Using collections,
promises and services that are available for designing and executing simple searches that are suited to the topic.
600. SELF-DIRECTED LEARNING - Level 1. Completing set tasks within established deadlines. Working with
recommended information sources according to the guidelines set by lecturers.

Teaching methodology

The course consists of 4 hours per week of classroom activity (large size group).

The 4 hours in the large size groups are devoted to theoretical lectures, in which the teacher presents the basic
concepts and topics of the subject, shows examples and solves exercises.

Support material in the form of a detailed teaching plan is provided using the virtual campus ATENEA: content, program
of learning and assessment activities conducted and literature.

Learning objectives of the subject

Students will acquire a general understanding of linear algebra, methods for solving linear problems encountered in
engineering, and key aspects of analytical geometry. They will also acquire the skills to solve mathematical problems
encountered in engineering that involve these concepts.

On completion of the course, students will have acquired the ability to:
1. Interpret vector spaces;
2. Solve linear equation systems manually and using basic software;
3. Produce geometric interpretations of concepts in vector calculus.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 30h 30m</th>
<th>20.33%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 17h 30m</td>
<td>11.67%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 12h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 6h</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 84h</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Content

1. Vector Space

Description:

- Basic problems.
- Rank of a system of vectors. Sum and intersection.
- Direct sum. Grassmann.

Learning time: 21h 36m
- Theory classes: 7h
- Practical classes: 2h
- Self study: 12h 36m

2. Matrices

Description:

Learning time: 10h 48m
- Theory classes: 3h
- Practical classes: 2h 30m
- Self study: 6h 18m

3. Determinant

Description:
Definition. Basic properties. Calculation of a determinant. Row/column operations.

Learning time: 14h 23m
- Theory classes: 4h
- Practical classes: 2h
- Self study: 8h 23m
4. System of linear equations

Learning time: 8h 24m
Theory classes: 2h 30m
Practical classes: 1h
Self study: 4h 54m

Description:
Definition and types. Augmented matrix.
Row operation. Equivalent systems.
Rouché-Frobenius theorem.
Gauss-Jordan Reduction. Cramer's rule.
Linear Systems. Exercises.

5. Linear Transformation

Learning time: 21h 36m
Theory classes: 3h
Practical classes: 2h
Laboratory classes: 4h
Self study: 12h 36m

Description:
Definition and classification. Range Space and Null Space.
Change of Basis.
Linear Transformation. Exercises.

6. Homomorphism

Learning time: 16h 48m
Theory classes: 3h
Practical classes: 4h
Self study: 9h 48m

Description:
Eigenvalues and eigenvectors.
Cayley-Hamilton theorem.
Homomorphisms. Exercises.
Exercises. Diagonalizability.
Cayley-Hamilton theorem.
7. - Inner product Space

Description:
- Definition. Orthogonal and orthonormal vectors. Orthogonal subspace.
- Norm. Basic properties.
- Fourier coefficient.
- Pythagoras theorem.

Basic exercises.
- Cauchy-Schwarz inequality.
- Triangle inequality.
- Basic properties

Basic exercises.

Learning time: 32h 24m
- Theory classes: 5h
- Practical classes: 3h 30m
- Laboratory classes: 5h
- Self study: 18h 54m

8. - Affine Geometry

Description:
- Definition.
- Reference systems.
- Coordinates related. Currency reference systems.
- Incidence and parallelism.

Affinites

Exercises. General properties.

Learning time: 18h
- Theory classes: 3h
- Practical classes: 1h 30m
- Laboratory classes: 3h
- Self study: 10h 30m
250201 - ALGLIN - Linear Algebra

Qualification system

The final grade is obtained from partial qualifications follows:

- E0: Continuous assessment activities
- E1: Test of the units developed on the first half of the term
- E2: Test of the units developed on the second half of the term
- E3: Global test of the course

The student has to choose whether to take test E2 or E3.

NF1 = 0.3E0 + 0.35E1 + 0.35E2
NF2 = 0.3E0 + 0.7E3

Final Mark = max {NF1, NF2}

The exams consist of a part with questions on concepts associated with learning objectives in terms of subject knowledge or understanding, application and a set of exercises.

Criteria for re-evaluation qualification and eligibility: Students that failed the ordinary evaluation and have regularly attended all evaluation tests will have the opportunity of carrying out a re-evaluation test during the period specified in the academic calendar. Students who have already passed the test or were qualified as non-attending will not be admitted to the re-evaluation test. The maximum mark for the re-evaluation exam will be five over ten (5.0). The non-attendance of a student to the re-evaluation test, in the date specified will not grant access to further re-evaluation tests. Students unable to attend any of the continuous assessment tests due to certifiable force majeure will be ensured extraordinary evaluation periods.

These tests must be authorized by the corresponding Head of Studies, at the request of the professor responsible for the course, and will be carried out within the corresponding academic period.

Regulations for carrying out activities

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

Bibliography

Basic:

Complimentary: