250233 - HIDSUPSUB1 - Surface and Groundwater Hydrology

Coordinating unit: 250 - ETSECCPB - Barcelona School of Civil Engineering
Teaching unit: 751 - DECA - Department of Civil and Environmental Engineering
Academic year: 2018
Degree: BACHELOR'S DEGREE IN PUBLIC WORKS ENGINEERING (Syllabus 2010). (Teaching unit Compulsory)
ECTS credits: 4,5
Teaching languages: English

Teaching staff
Coordinator: FRANCISCO JAVIER SANCHEZ VILA
Others: ALLEN BATEMAN PINZON, ALBERT FOLCH SANCHO, FRANCISCO JAVIER SANCHEZ VILA

Opening hours
Timetable: Prof. Xavier Sanchez Vila Tuesday, 16-20h

Degree competences to which the subject contributes

Specific:
3087. Knowledge of and ability to design and dimension hydraulic works and facilities, energy systems and the harnessing of hydroelectric energy, and plan and manage surface and underground hydraulic resources
3089. Knowledge of the design of urban services and utilities to do with water distribution and sewage treatment

3090. Knowledge and understanding of supply and treatment systems, and of how to dimension, construct and conserve them

General:
3105. Students will learn to identify, formulate and solve a range of engineering problems. They will be expected to show initiative in interpreting and solving specific civil engineering problems and to demonstrate creativity and decision-making skills. Finally, students will develop creative and systematic strategies for analysing and solving problems.
3106. Students will learn to assess the complexity of the problems examined in the different subject areas, identify the key elements of the problem statement, and select the appropriate strategy for solving it. Once they have chosen a strategy, they will apply it and, if the desired solution is not reached, determine whether modifications are required. Students will use a range of methods and tools to determine whether their solution is correct or, at the very least, appropriate to the problem in question. More generally, students will be encouraged to consider the importance of creativity in science and technology.
3107. Students will learn to identify, model and analyse problems from open situations, consider alternative strategies for solving them, select the most appropriate solution on the basis of reasoned criteria, and consider a range of methods for validating their results. More generally, students will learn to work confidently with complex systems and to identify the interactions between their components.
3111. Students will learn to plan, design, manage and maintain systems suitable for use in civil engineering. They will develop a systematic approach to the complete life-cycle of a civil engineering infrastructure, system or service, which includes drafting and finalising project plans, identifying the basic materials and technologies required, making decisions, managing the different project activities, performing measurements, calculations and assessments, ensuring compliance with specifications, regulations and compulsory standards, evaluating the social and environmental impact of the processes and techniques used, and conducting economic analyses of human and material resources.
3112. Students will develop an understanding of the different functions of engineering, the processes involved in the life-cycle of a construction project, process or service, and the importance of systematising the design process. They will learn to identify and interpret the stages in preparing a product design specification (PDS), draft and optimise...
specifications and planning documents, and apply a systematic design process to the implementation and operation phases. Students will learn to write progress reports for a design process, use a range of project management tools and prepare final reports, and will be expected to show an awareness of the basic economic concepts associated with the product, process or service in question.

3113. Students will learn to identify user requirements, to draft definitions and specifications of the product, process or service in question, including a product design specification (PDS) document, and to follow industry-standard design management models. Students will be expected to show advanced knowledge of the steps involved in the design, execution and operation phases and to use the knowledge and tools covered in each subject area to the design and execution of their own projects. Finally, students will assess the impact of national, European and international legislation applicable to engineering projects.

Transversal:

585. ENTREPRENEURSHIP AND INNOVATION - Level 1. Showing enterprise, acquiring basic knowledge about organizations and becoming familiar with the tools and techniques for generating ideas and managing organizations that make it possible to solve known problems and create opportunities.

586. ENTREPRENEURSHIP AND INNOVATION - Level 2. Taking initiatives that give rise to opportunities and to new products and solutions, doing so with a vision of process implementation and market understanding, and involving others in projects that have to be carried out.

589. SUSTAINABILITY AND SOCIAL COMMITMENT - Level 2. Applying sustainability criteria and professional codes of conduct in the design and assessment of technological solutions.

594. TEAMWORK - Level 3. Managing and making work groups effective. Resolving possible conflicts, valuing working with others, assessing the effectiveness of a team and presenting the final results.

584. THIRD LANGUAGE. Learning a third language, preferably English, to a degree of oral and written fluency that fits in with the future needs of the graduates of each course.

Teaching methodology

The course consists of three classes a week in the classroom.

The classes are divided into lectures and exercises. The latter will be dedicated to solve the doubts about the exercises provided as homework.

Support materials will be provided through the virtual campus ATENEA:

Learning objectives of the subject

Students will acquire an understanding of the applied concepts of surface and groundwater hydrology and learn to apply this knowledge to engineering problems.

Upon completion of the course, students will have acquired the ability to: 1. Carry out a hydrological modelling study of a basin, including aspects of water resource quality and management. 2. Carry out a hydrological modelling study of an aquifer and contaminant transport, including aspects of water resource quality and management.

Description of physical processes associated with drainage basins and their quantification, using professional tools such as HEC-HMS; Basic concepts of groundwater flow and solute transport in soil, including both qualitative and quantitative aspects; Darcy's law, Fick's law, and equations for flow and solute transport in aquifers; Well hydraulics.
Study load

<table>
<thead>
<tr>
<th>Total learning time: 112h 30m</th>
<th>Theory classes: 25h 22.22%</th>
<th>Practical classes: 10h 8.89%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laboratory classes: 10h 8.89%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guided activities: 4h 30m 4.00%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self study: 63h 56.00%</td>
<td></td>
</tr>
</tbody>
</table>
250233 - HIDSUPSUB1 - Surface and Groundwater Hydrology

Content

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Learning time: 2h 24m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Introducing Surface Hydrology in the context of the subject. Objectives. Prerequisites and evaluation methodology.</td>
<td>Theory classes: 1h</td>
</tr>
<tr>
<td>Specific objectives: Introducing Surface Hydrology in the context of the subject. Objectives. Prerequisites and evaluation methodology.</td>
<td>Self study: 1h 24m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concepts hydro-geological and hydro-geochemical</th>
<th>Learning time: 16h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: Movement of water in the hydrosphere. Underground reservoirs. Chemical components of groundwater Aquifer contamination. Study and management of chemical analysis. Hydrogeological exploration</td>
<td>Theory classes: 5h</td>
</tr>
<tr>
<td></td>
<td>Self study: 9h 48m</td>
</tr>
</tbody>
</table>
The flow of groundwater

Learning time: 14h 23m
Theory classes: 4h
Practical classes: 2h
Self study: 8h 23m

Description:
Water flow in porous media.
Continuity Equation.
Solutions 1D flow in porous media
Springs.
Flow Networks.
Piezometric surface layout and flow networks.

Specific objectives:
Continuity Equation. The coefficient of storage. Steady state and transient state. Some particular solutions.
Solutions 1D flow in porous media
Flow Networks. Definition. Path. Qualitative and quantitative interpretation.
Piezometric surface layout and flow networks.

Hydraulics of wells

Learning time: 9h 36m
Theory classes: 2h
Practical classes: 1h
Laboratory classes: 1h
Self study: 5h 36m

Description:
Hydraulic Basics deposits.
Hydraulic transient deposits: confined aquifer, semi-confined and free.
Interpretation of pumping tests. Graphic methods.
Permeameter, probes, groundwater models / sandbox

Specific objectives:
Permeameter, probes, groundwater models / sandbox

Evaluation

Learning time: 12h
Laboratory classes: 5h
Self study: 7h
Hydrogeology and civil engineering

Description:
Impact of public works on the flow and quality of groundwater
Stability of slopes and dams, soils and rocks.
Drainage excavation

Specific objectives:
Drainage excavation

Learning time: 7h 11m
- Theory classes: 2h
- Practical classes: 1h
- Self study: 4h 11m

SURFACE HYDROLOGY

Description:

Specific objectives:
Review the water cycle and introduce the concept of hydrological basin. Components. Hydrologic balance at basin level.

Learning time: 2h 24m
- Theory classes: 1h
- Self study: 1h 24m

Run-off

Description:

Specific objectives:
Knowing the characteristics of runoff in a watershed. Baseflow, direct runoff flow and methodologies to measure.
Precipitation

Description:
- Rain over an area. Arithmetic average. Thiessen polygons
- Ejercicios

Specific objectives:
- Stations and networks for measuring precipitation. Concepts of pluviograph and hietograph
- Statistical analysis of precipitation.
- Construction of the IDF curve and probability assignment
- Exercises on the analysis of precipitation and obtaining synthetic hietographs

Rainfall Runoff

Description:
- Runoff coefficient. Rational Formula. The isochrones. Time of concentration. exercise
- The rational method. Exercises

Specific objectives:
- Calculation of runoff by the rational methods. Assumptions and limitations. Calculation in accordance with ACA
- Application of the rational method
Infiltration

Description:
- Infiltration concept. The infiltration method SCS.
- Antecedent moisture conditions.
- Using the SCS method for determining the direct runoff hydrograph

Specific objectives:
- Knowing the effect of surface runoff infiltration and know the most commonly used method for evaluation
- Learn to use the method of the SCS

Learning time: 4h 48m
- Theory classes: 1h
- Practical classes: 1h
- Self study: 2h 48m

<table>
<thead>
<tr>
<th>Theory classes</th>
<th>Practical classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1h</td>
<td>1h</td>
<td>2h 48m</td>
</tr>
</tbody>
</table>

The unit hydrograph

Description:
- Regionalization of flow rates. Myers method. Method Francou-Rodier. The concept of Unit Hydrograph
- Synthetic unit hydrograph. The hydrograph of the SCS. The S curve and its application
- Unit hydrograph. Exercises

Specific objectives:
- Concept and application of unit hydrograph
- Definition of synthetic unit hydrograph. SCS unit hydrograph. The S curve and its application
- Practical application of the unit hydrograph method

Learning time: 7h 11m
- Theory classes: 2h
- Practical classes: 1h
- Self study: 4h 11m

<table>
<thead>
<tr>
<th>Theory classes</th>
<th>Practical classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>2h</td>
<td>1h</td>
<td>4h 11m</td>
</tr>
</tbody>
</table>

Flood routing

Description:
- Description of an avenue. Laminating a concept avenida. El Puls method or spread in reservoirs. The Muskingum method or propagation channels
- Propagation methods training

Specific objectives:
- Concept of propagation of hydrographs through rivers and reservoirs. Muskingum and Modified Puls method
- Learning to use the propagation methods in rivers and reservoirs

Learning time: 4h 48m
- Theory classes: 1h
- Laboratory classes: 1h
- Self study: 2h 48m

<table>
<thead>
<tr>
<th>Theory classes</th>
<th>Laboratory classes</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1h</td>
<td>1h</td>
<td>2h 48m</td>
</tr>
</tbody>
</table>
Qualification system

In the continuous evaluation the following factors will be taken into account:

- Exams performed during laboratory hours (NA)
- Exercises performed at home (NP1)
- Exercises done in class (NP2)
- Short tests at the end of the class (NP3)

50% of the grade will be the part of surface hydrology and the other 50% of the part of underground hydrology.

The qualification of the exercises of periodic evaluation or exams, NP is the average grade obtained in the practical exercises carried out (NP1, NP2, NP3).

Criteria for qualification and admission to re-evaluation: Students suspended in the ordinary evaluation who have been regularly submitted to the evaluation tests of the suspended subject will have the option to perform a re-evaluation test in the period fixed in the academic calendar. Students who have already passed the test or students who are classified as not being presented may not take the re-evaluation of a subject. The maximum qualification in the case of taking the re-evaluation test will be five (5.0). The non-attendance of a student summoned to the reevaluation test, held during the period established, may not lead to another test with a later date. Extraordinary evaluations will be carried out for those students who due to force majeure have not been able to perform any of continuous assessment tests.

These tests must be authorized by the corresponding head of studies, at the request of the teacher responsible for the subject, and will be carried out within the corresponding academic period.

Regulations for carrying out activities

Failure to perform a laboratory or continuous assessment activity in the scheduled period will result in a mark of zero in that activity.

Bibliography

Basic:

Complementary:

