Degree competences to which the subject contributes

Specific:

4034. Drilling and support techniques for underground and surface works

4047. Students will acquire knowledge of geotechnical engineering, including modelling of public infrastructures, underground structures and geotechnical structures.

4065. Design and execution of surface and underground works

Generical:

3103. Students will learn to identify, formulate and solve a range of engineering problems. They will be expected to show initiative in interpreting and solving specific civil engineering problems and to demonstrate creativity and decision-making skills. Finally, students will develop creative and systematic strategies for analysing and solving problems.

3106. Students will learn to assess the complexity of the problems examined in the different subject areas, identify the key elements of the problem statement, and select the appropriate strategy for solving it. Once they have chosen a strategy, they will apply it and, if the desired solution is not reached, determine whether modifications are required. Students will use a range of methods and tools to determine whether their solution is correct or, at the very least, appropriate to the problem in question. More generally, students will be encouraged to consider the importance of creativity in science and technology.

3107. Students will learn to identify, model and analyse problems from open situations, consider alternative strategies for solving them, select the most appropriate solution on the basis of reasoned criteria, and consider a range of methods for validating their results. More generally, students will learn to work confidently with complex systems and to identify the interactions between their components.

3109. Students will learn to plan, design, manage and maintain systems suitable for use in civil engineering. They will develop a systematic approach to the complete life-cycle of a civil engineering infrastructure, system or service, which includes drafting and finalising project plans, identifying the basic materials and technologies required, making decisions, managing the different project activities, performing measurements, calculations and assessments, ensuring compliance with specifications, regulations and compulsory standards, evaluating the social and environmental impact of the processes and techniques used, and conducting economic analyses of human and material resources.

3112. Students will develop an understanding of the different functions of engineering, the processes involved in the life-cycle of a construction project, process or service, and the importance of systematising the design process. They will learn to identify and interpret the stages in preparing a product design specification (PDS), draft and optimise specifications and planning documents, and apply a systematic design process to the implementation and operation phases. Students will learn to write progress reports for a design process, use a range of project management tools and prepare final reports, and will be expected to show an awareness of the basic economic concepts associated with the product, process or service in question.

3113. Students will learn to identify user requirements, to draft definitions and specifications of the product, process
Students will acquire the knowledge and skills to construct geotechnical infrastructure, in particular underground excavations in soil and rock.

Upon completion of the course, students will be able to:
1. Determine the geomechanical and hydrological properties of a rock from laboratory data;
2. Characterise a rock massif on the basis of field data;
3. Solve a problem involving underground excavation, identifying the materials to be cleared, designing surveys, identifying the most suitable machinery for each task and analysing the ground response.

Matrix properties; Discontinuities; Fracture mechanics; In situ stress; Rock foundations; Hydraulics of rock massifs; Talus
250343 - MECROQEXSU - Rock Mechanics and Underground Excavation

Slope stability; History of tunnel construction; The canal and railway construction boom; “National” excavation methods; Modern techniques; Geomechanical classifications for tunnel construction; Terzaghi and Lauffer classifications; Modern classifications: Q Index, RMR; In situ stress state; Influence of tectonics; Effect of anisotropy of rock massifs; In situ measurements; Tunnels in elastic regime; Analytical solutions; Stress and deformation distributions; Effect of excavation method; Numerical calculation of stress distribution; Structural stability; Identification of unstable wedges in the presence of three-family discontinuity; Determination of safety coefficients; Rock matrix resistance; Hoek-Brown failure criterion; Impact of discontinuities on the failure criterion; Adaptation of the Hoek-Brown criterion for rock massifs; Correlation of the failure criterion parameters with the Q Index and RMR; Characteristic curve of tunnels; Derivation of the characteristic curve in elasto-plastic regime; Elastic phase; Determination of the plastic crown; Support characteristic curves; Shotcrete; Trusses; Bolts; Continuous coating; Determination of equilibrium conditions; New Austrian Tunnelling method; Construction cycle; Tunnel mouth; Perforation, blasting, clearing rubble, roof support, sounding; Tunnel boring machines; Tunnels in soil; Belgian method and German method; Shields; Tunnels and water; Modification of the elasto-plastic solution in the presence of filtration; Injection effects and drainage; Watertightness of coating; Surface settlement caused by tunnelling; Influence of buildings; Tunnel collapse; Measures to adopt; Case studies

<table>
<thead>
<tr>
<th>Study load</th>
<th>Total learning time: 150h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group:</td>
<td>35h</td>
</tr>
<tr>
<td>Hours medium group:</td>
<td>13h</td>
</tr>
<tr>
<td>Hours small group:</td>
<td>12h</td>
</tr>
<tr>
<td>Guided activities:</td>
<td>6h</td>
</tr>
<tr>
<td>Self study:</td>
<td>84h</td>
</tr>
</tbody>
</table>
Content

Introduction

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>7h 11m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>3h</td>
</tr>
<tr>
<td>Self study:</td>
<td>4h 11m</td>
</tr>
</tbody>
</table>

Description:
- Excavations and tunnels. History of tunnel construction

Introduction to fracture mechanics

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>16h 48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>5h</td>
</tr>
<tr>
<td>Practical classes:</td>
<td>2h</td>
</tr>
<tr>
<td>Self study:</td>
<td>9h 48m</td>
</tr>
</tbody>
</table>

Description:
- Mechanics of nonlinear fractures. Scale effect. Initiation and propagation of fractures in rock
- Scale effects on the behavior of rockfill

Rock matrix, joints and rock mass

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>5h</td>
</tr>
<tr>
<td>Self study:</td>
<td>7h</td>
</tr>
</tbody>
</table>

Description:
- Discontinuities. Overview. Patton and Barton-Choubey failure criteria

Tensions "in situ"

<table>
<thead>
<tr>
<th>Learning time:</th>
<th>9h 36m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes:</td>
<td>4h</td>
</tr>
<tr>
<td>Self study:</td>
<td>5h 36m</td>
</tr>
</tbody>
</table>

Description:
- Importance. Stress states in the vicinity of tunnels and excavations
Stability of rock slopes

Learning time: 14h 23m
Description:
Correction and stabilization
Complete design of a rock slope

Circular tunnel in elastoplastic ground. Characteristic curves

Learning time: 12h
Description:
Planar strain. Mohr-Coulomb's elastoplastic model. Hoek-Brown's elastoplastic model
Spherical cavity. Mohr-Coulomb's elastoplastic model. Hoek-Brown's elastoplastic model

Tunnel-support interaction

Learning time: 7h 11m
Description:
Support curves. Bolts. Circular lining and trusses. 3D phenomena on the face

Water and rock mass

Learning time: 9h 36m
Description:
Characteristic curves of tunnels in the presence of flow. Implications
Construction of tunnels in rock

Description:

Learning time: 4h 48m
- Theory classes: 2h
- Self study: 2h 48m

Tunnel face stability

Description:
Application of plastic collapse theorems. 2D and 3D solutions for circular tunnels. Undrained case. Stability under drained conditions. La Floresta tunnels in slate

Learning time: 12h
- Theory classes: 2h
- Practical classes: 3h
- Self study: 7h

Tunnelling in soils

Description:

Learning time: 9h 36m
- Practical classes: 4h
- Self study: 5h 36m

Movements induced by tunneling

Description:

Learning time: 14h 23m
- Theory classes: 6h
- Self study: 8h 23m

Evaluation

Learning time: 14h 23m
- Laboratory classes: 6h
- Self study: 8h 23m
Qualification system

The course will be evaluated taking the mean of the two tests taken during the course and the final report.

There will be two tests: one at mid-term (E1) and another one by the end of the term (E2). Both tests will evaluate the knowledge of the students with regards to what has been taught by the time of the test is scheduled.

The result of the tests will be the maximum score of the second test plus the weighted mean of both tests (the first test will weight 40% and the second test will weight 60%).

Final test result = max. (0.4 * Result of E1 + 0.6 * Result of E2 ; ResultE2)

The report will be evaluated independently and will be 20% of the final score.

The final score of the course will be calculated as follows:

Final score = 0.8 * Final test result + 0.2 * Report score

The final score will be calculated from partial scores above 4 over 10.

Criteria for re-evaluation qualification and eligibility: Students that failed the ordinary evaluation and have regularly attended all evaluation tests will have the opportunity of carrying out a re-evaluation test during the period specified in the academic calendar. Students who have already passed the test or were qualified as non-attending will not be admitted to the re-evaluation test. The maximum mark for the re-evaluation exam will be five over ten (5.0). The non-attendance of a student to the re-evaluation test, in the date specified will not grant access to further re-evaluation tests. Students unable to attend any of the continuous assessment tests due to certifiable force majeure will be ensured extraordinary evaluation periods.

These tests must be authorized by the corresponding Head of Studies, at the request of the professor responsible for the course, and will be carried out within the corresponding academic period.

Regulations for carrying out activities

Failure to perform the second test or to deliver the report will result in a mark of zero.
Bibliography

Basic:

Complementary:

Hoek, Evert. Practical rock engineering. [s.l]: [s.n.]), 2000.