270031 - CN - Numerical Computation

Coordinating unit: 270 - FIB - Barcelona School of Informatics
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff
Coordinator: - Maria Àngela Grau Gotés (angela.grau@upc.edu)

Requirements
- Prerequisite M2
- Prerequisite M1

Degree competences to which the subject contributes

Specific:
CCO1.1. To evaluate the computational complexity of a problem, know the algorithmic strategies which can solve it and recommend, develop and implement the solution which guarantees the best performance according to the established requirements.
CCO2.3. To develop and evaluate interactive systems and systems that show complex information, and its application to solve person-computer interaction problems.
CCO2.6. To design and implement graphic, virtual reality, augmented reality and video-games applications.

Generical:
G9. PROPER THINKING HABITS: capacity of critical, logical and mathematical reasoning. Capacity to solve problems in her study area. Abstraction capacity: capacity to create and use models that reflect real situations. Capacity to design and perform simple experiments and analyse and interpret its results. Analysis, synthesis and evaluation capacity.

Teaching methodology

Classes of Theory: The theory classes will consist of presenting a real problem and the definition and construction of concepts, methods and techniques necessary to resolve the situation and to do, in addition, a prediction for problems or situations presented to the next. To solving problems that complement and/or extend the theoretical and presented examples of the theory classes.

Practical Classes: Classes will consist of laboratory studies and visualization algorithms worked on the theory class, using a numerical software -Matlab, Octave- more input from symbolic manipulator -Maple-. These exercises will be introduced initially by the teacher in a classroom PCs and the students continue to interactively according to a previously prepared script of the session.

Practices: Each student will perform more than five short practices in Matlab corresponding to the first five chapters. These practices consist of one or more application routines proposed by the teacher to solve a particular practical problem numerically.

Learning objectives of the subject

1. Analysis, programming, interpretation and verification of results, documentation and prediction of the mathematical model to study. Knowledge of the capacity of the machine where epsilon is working. Calculus of functions and numerical
error propagation and representation of data. Ability to study the problem and its numerical stability: ill conditioned problems. Calculation of effective capacity and series acceleration of convergence.

2. Distinguish between methods of interpolation and approximation of functions. Master the interpolation methods: linear system, Lagrange, Newton and Txebixev. Learn the advantages and disadvantages of each. Differentiate between Lagrange polynomial interpolation and hermitiana, and know to use them as appropriate. Choose the method of approximation: error in the choice of nodes, minimum squared error and the standard error of sub-infinite interval.

3. Evaluation of the technical resolution to use depending on the size of the system: direct or iterative. Estimate condition number of the matrix system. Calculation of cash values and their application in various models.

4. Get dominate the methods of numerical integration of differential equations and simpler problems involving the integration step reduction or improvement of computation time with a step too large.

5. Analyze and decide the most efficient method to compute solutions of a nonlinear equation. Studying the concept of order and the computational cost for iterative methods. Learn some tolerance requiring the calculation, counting the number of iterations necessary to introduce a set of initial approximations, the problem applied to several examples with varying difficulty.

6. Discretize the equations, analyze the failure of local and global problem solving associated systems of equations.

7. Consider the possibilities that may present a problem, achieving a versatility that makes possible wider application in terms of the diversity question.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Theory classes: 30h</th>
<th>20.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical classes: 15h</td>
<td>Practical classes: 30h</td>
<td>20.00%</td>
</tr>
<tr>
<td>Laboratory classes: 15h</td>
<td>Laboratory classes: 15h</td>
<td>10.00%</td>
</tr>
<tr>
<td>Guided activities: 6h</td>
<td>Guided activities: 6h</td>
<td>4.00%</td>
</tr>
<tr>
<td>Self study: 84h</td>
<td>Self study: 84h</td>
<td>56.00%</td>
</tr>
<tr>
<td>Preparatory Areas</td>
<td>Degree competences to which the content contributes:</td>
<td>Description:</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>PRELIMINARIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Degree competences to which the content contributes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction to the course; Methodology; Programme;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bibliography; Evaluation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What is CN? Mathematical modelling. Sources of error,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and the stability of algorithms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floating point arithmetical representation. Error</td>
<td></td>
</tr>
<tr>
<td></td>
<td>analysis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculating series. Accelerating convergence.</td>
<td></td>
</tr>
<tr>
<td>NUMERICAL LINEAR ALGEBRA</td>
<td>Degree competences to which the content contributes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System of Linear Equations. Directe methods: Gaussian</td>
<td></td>
</tr>
<tr>
<td></td>
<td>elimination. LU decomposition. Iterative methods.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eigenvalues and Eigenvectors. The power method. The</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QR method. Singular values.</td>
<td></td>
</tr>
<tr>
<td>ZEROS OF NONLINEAR FUNCTIONS</td>
<td>Degree competences to which the content contributes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nested interval methods and iterative methods.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convergence order and method efficiency.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Accelerating convergence.</td>
<td></td>
</tr>
<tr>
<td>POLYNOMIAL INTERPOLATION</td>
<td>Degree competences to which the content contributes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polynomial interpolation: Lagrange Method. Newton</td>
<td></td>
</tr>
<tr>
<td></td>
<td>divided difference method.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interpolation errors. Choice of nodes. Tchebichev</td>
<td></td>
</tr>
<tr>
<td></td>
<td>polynomials.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Runge"s phenomenon. Hermite interpolation.</td>
<td></td>
</tr>
<tr>
<td>NUMERICAL INTEGRATION</td>
<td>Degree competences to which the content contributes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numerical integration: Newton-Côtes formulae. Romberg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gaussian integration.</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS

Degree competences to which the content contributes:

Description:
- Boundary value problems. The Finite Difference Method applied to linear problems.

INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

Degree competences to which the content contributes:

Description:
Planning of activities

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
<th>Specific objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Matlab</td>
<td>4h 12m</td>
<td>1</td>
</tr>
<tr>
<td>Theory classes: 0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical classes: 0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided activities: 0h 12m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study: 2h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminaries.</td>
<td>10h 12m</td>
<td>1</td>
</tr>
<tr>
<td>Theory classes: 4h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical classes: 0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided activities: 0h 12m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study: 4h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical linear algebra.</td>
<td>27h 48m</td>
<td>3</td>
</tr>
<tr>
<td>Theory classes: 8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practical classes: 0h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guided activities: 0h 48m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study: 11h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First partial test theory.</td>
<td>6h</td>
<td>1, 2, 3, 7</td>
</tr>
<tr>
<td>Guided activities: 2h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self study: 4h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description:
- Content associated with this activity:
 - PRELIMINARIES
 - ZEROS OF NONLINEAR FUNCTIONS
 - NUMERICAL LINEAR ALGEBRA.
- Specific objectives:
 1, 2, 3, 7
First test.

Hours: 4h
Guided activities: 2h
Self study: 2h

Description:
The set of problems to be solved deal with the following contents:
- MATLAB
- PRELIMINARIES
- ZEROS OF NONLINEAR FUNCTIONS
- NUMERICAL LINEAR ALGEBRA.

Specific objectives:
1, 3, 5, 7

Practical delivery 1

Hours: 14h
Guided activities: 0h
Self study: 14h

Zeros of nonlinear functions.

Hours: 12h 24m
Theory classes: 4h
Practical classes: 0h
Laboratory classes: 4h
Guided activities: 0h 24m
Self study: 4h

Specific objectives:
5

Polynomial interpolation.

Hours: 10h 24m
Theory classes: 2h
Practical classes: 0h
Laboratory classes: 2h
Guided activities: 0h 24m
Self study: 6h

Specific objectives:
2

Numerical integration.

Hours: 14h 24m
Theory classes: 4h
Practical classes: 0h
Laboratory classes: 4h
Guided activities: 0h 24m
Self study: 6h
270031 - CN - Numerical Computation

Specific objectives:
4

Differential Equations.

| Hours | Theory classes: 4h
Laboratory classes: 4h
Guided activities: 0h
Self study: 5h |
|-------|--|

Specific objectives: 6, 7

Second theory test.

| Hours | Guided activities: 2h
Self study: 4h |
|-------|--|

Description:
Content associated with this activity:
- NUMERICAL LINEAR ALGEBRA
- NUMERICAL INTERPOLATION
- NUMERICAL INTEGRATION
- INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS.

Specific objectives: 4, 5, 6, 7

Second test.

| Hours | Guided activities: 2h
Self study: 2h |
|-------|--|

Description:
The set of problems to be solved deal with the following contents:
- MATLAB
- ZEROS OF NONLINEAR FUNCTIONS
- POLYNOMIAL INTERPOLATION
- NUMERICAL INTEGRATION
- INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS.

Specific objectives: 1, 2, 4, 5, 6, 7

Practical delivery 2

| Hours | Guided activities: 0h
Self study: 14h |
|-------|--|
Final exam problems with Matlab.

Description:
Content associated with this activity:
- PRELIMINARIES
- ZEROS OF NONLINEAR FUNCTIONS
- NUMERICAL LINEAR ALGEBRA
- NUMERICAL INTERPOLATION
- NUMERICAL INTEGRATION
- INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS
- INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS.

Specific objectives:
1, 2, 3, 4, 5, 6, 7

Hours: 9h
Guided activities: 3h
Self study: 6h

Qualification system

In the evaluation of the course will participate together several concepts that will lead to the final grade:

NOTA_CURS = 0,1*LABO+0,3*PRAC+0,3*TEO+0,*3PROBS

1.- Grade LABO. The classes of laboratory-practice exercises in Matlab or Octave (1 points). Two or more tests.
2.- Grade PRAC. Two reports of Matlab practices (3 points).
3.- Grade TEO. Two or more test for the most basic concepts of theory (3 points). It consists of a short answer test questions. Will be held in class time.
4.- Grade PROBS. Two or more tests of problems with Matlab (3 points). Will be held in class time.

The students who in writing addressed to the professor responsible for the subject renounce the continuous evaluation, will have to present the PRAC assigned during the course (30%) and carry out a final exam of the subject that it will cover the rest of the final grade. with the same weight as the evaluation continues. In this case the final grade is:

NOTA_CURS_AU = 0,3*PRAC+0,7*EXAMEN_FINAL

The technical skills are worth 60% of the course. The cross-competition is worth 40%. The note will be calculated cross competition from activities in the classroom and laboratory practices delivered.
270031 - CN - Numerical Computation

Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

https://es.mathworks.com/matlabcentral/fileexchange/

https://es.mathworks.com/moler.html