1. Knowing the basic methodology and scope of Operations Research
2. Learn simple models of O.R., and special solutions
3. Understand and identify the components of an optimization problem
4. Identification of objectives in a decision process. Learn how to express constraints, both linear and nonlinear, to meet the conditions for decision variables in the model. To formulate multiobjective programming models and goal programming models.
5. Understanding the structure and properties of linear and non-linear programming problems
6. Understand and apply the simplex method to solve linear programming problems
7. Know how to solve linear programming problems in which variables are associated to a graph. Networks flow problems.
8. Understand and apply basic techniques for solving linear problems with integer variables
9. Understand and identify the inputs and outputs of Operations Research models underlying various information systems and decision support systems described in the practical sessions.
10. Being able to apply heuristic methods for integer linear programming problems
11. Know and be able to apply different kinds of metaheuristics seen in the course
12. Being able to effectively use information resources in O.R.
13. Having proper attitude and motivation towards work
Study load

<table>
<thead>
<tr>
<th></th>
<th>Theory classes:</th>
<th>Practical classes:</th>
<th>Laboratory classes:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time:</td>
<td>150h</td>
<td>30h</td>
<td>15h</td>
<td>15h</td>
<td>6h</td>
</tr>
<tr>
<td></td>
<td>20.00%</td>
<td>10.00%</td>
<td>10.00%</td>
<td>4.00%</td>
<td>56.00%</td>
</tr>
<tr>
<td></td>
<td>30h</td>
<td>15h</td>
<td>15h</td>
<td>6h</td>
<td>84h</td>
</tr>
</tbody>
</table>
Content

Introduction to modeling decisions:

Degree competences to which the content contributes:

Description:
The modeling in the process of decision making. Models of Operations Research. The cycle of operations research methodology

Continuous programming. Properties and methods

Degree competences to which the content contributes:

Description:

Continuous programming models and systems to support decision making

Degree competences to which the content contributes:

Description:

Integer Linear Programming

Degree competences to which the content contributes:

Description:
Integer Linear programming problem properties. Some problems ple: the problem of scheduling workers, problems with routing problems fixed cost and location algorithms PLE: secant planes; Branch & Bound algorithm

Heuristic methods for solving ILP problems

Degree competences to which the content contributes:

Description:

Search and evaluation of information for conducting a task in O.R.
Motivation and attitude to work in O.R.

| Degree competences to which the content contributes: |
| Description: |
| Motivation for liability, the quality of their work and professional realization. Ability to adapt to organizational changes, technological. Teamwork. Adapting the lack of information and material limitations and time |
Planning of activities

| Block 1. Presentation of the objectives of the basic models of IO and IO | Hours: 2h
Theory classes: 1h
Practical classes: 0h
Laboratory classes: 0h
Guided activities: 0h
Self study: 1h |
|---|---|
| **Description:**
Monitoring of exposures and review the material proporcionat for the corresponding session. Assimilation of the role of optimization problems as a source of modeling.
Specific objectives:
1, 2, 3 | |

| Analysis of information sources | Hours: 6h 30m
Theory classes: 0h 30m
Practical classes: 0h
Laboratory classes: 0h
Guided activities: 0h
Self study: 6h |
|---|---|
| **Description:**
Analysis and evaluation of information provided by certain references (software packages / references that can provide solutions to coursework.
Specific objectives:
12 | |

| Block 2. Continuous optimization models and systems to aid decision making | Hours: 12h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 0h
Guided activities: 0h
Self study: 6h |
|---|---|
| **Description:**
Follow the models exhibited in the theory sessions. Resolution of monitored and modeling exercises. In the lab sessions, training in the use of algebraic representation languages.
Specific objectives:
1, 3, 4 | |

| Using search engines referrals, BD and Electronic | Hours: 4h 30m
Theory classes: 0h 30m
Practical classes: 0h
Laboratory classes: 0h
Guided activities: 0h
Self study: 4h |
|---|---|
Evaluation of the search for references in relation to coursework

Description:
Search for publications of certain writers in relation to coursework. Viewing videos:
http://bibliotecnica.upc.edu/habilitats/eines-de-cerca-dinformacio
http://bibliotecnica.upc.edu/habilitats/l039estrategia-de-cerca # 4

Specific objectives:
12

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery report with the 5 most significant references and details of the search tools used to find them</td>
<td>0h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
<td></td>
</tr>
<tr>
<td>Self study: 0h</td>
<td></td>
</tr>
</tbody>
</table>

Block 3. Continuous programming problems

Description:
Tracking theory classes with the support of teaching materials produced specifically. Assimilation of basic concepts feasible optimal basis, optimal local and global. Ability to perform the steps of the simplex algorithm. Individual and monitored resolution of problems. Ability to define linear and non linear models using algebraic languages in the lab sessions

Specific objectives:
5, 6

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking theory classes with the support of teaching materials produced specifically. Assimilation of basic concepts feasible optimal basis, optimal local and global. Ability to perform the steps of the simplex algorithm. Individual and monitored resolution of problems. Ability to define linear and non linear models using algebraic languages in the lab sessions</td>
<td>16h</td>
</tr>
<tr>
<td>Theory classes: 5h</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 3h</td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 0h</td>
<td></td>
</tr>
<tr>
<td>Guided activities: 0h</td>
<td></td>
</tr>
<tr>
<td>Self study: 8h</td>
<td></td>
</tr>
</tbody>
</table>

Attitude and motivation toward work. A1

Description:
Students discuss laboratory exercises delivered according to guidelines contained in a section.

Specific objectives:
14

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students discuss laboratory exercises delivered according to guidelines contained in a section.</td>
<td>4h</td>
</tr>
<tr>
<td>Theory classes: 0h</td>
<td></td>
</tr>
<tr>
<td>Practical classes: 0h</td>
<td></td>
</tr>
<tr>
<td>Laboratory classes: 1h</td>
<td></td>
</tr>
<tr>
<td>Guided activities: 0h</td>
<td></td>
</tr>
<tr>
<td>Self study: 3h</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation of information sources

Description:
Delivery of a report of the evaluation

Specific objectives:
12

Hours: 0h
- Guided activities: 0h
- Self study: 0h

Assessing motivation and attitude towards work. A1

Description:
Using rubrics

Specific objectives:
14

Hours: 0h
- Guided activities: 0h
- Self study: 0h

Block 4. Network Flow Problems

Description:
Make simplex iterations for the problem of min-cost. application of minimal paths algorithms. implementation of the max-flow algorithm min.cut

Specific objectives:
1, 7

Hours: 14h
- Theory classes: 4h
- Practical classes: 3h
- Laboratory classes: 0h
- Guided activities: 0h
- Self study: 7h

Evaluation of a lab 1

Description:
Handed a questionnaire completed by the end of the session. This questionnaire will go.

Specific objectives:
2, 3, 4, 5, 6, 7

Hours: 0h
- Guided activities: 0h
- Self study: 0h
270032 - IO - Operations Research

Part 1

Hours: 6h
Guided activities: 2h
Self study: 4h

Description:
Test problems for units of 1,2,3 and 4 of the course and the corresponding block 8-related objectives associated blocks 1,2,3 and 4.
Specific objectives:
1, 2, 3, 4, 5, 6, 7

Block 5. Integer linear programming modeling

Hours: 12h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 0h
Guided activities: 0h
Self study: 6h

Description:
Acquire the ability to model using binary variables of type logical conditions. Taking as reference the models presented in the theory sessions in order to undertake their own development and modeling
Specific objectives:
1, 9

Attitude and motivation toward work. A2

Hours: 7h
Theory classes: 0h
Practical classes: 0h
Laboratory classes: 2h
Guided activities: 0h
Self study: 5h

Description:
Analysis of the changes proposed by the teacher at Work Course and proposed changes to be made in a limited time. Discussion with other working groups of the adequacy of the solutions adopted
Specific objectives:
14

Assessing motivation and attitude towards work. A2

Hours: 0h
Guided activities: 0h
Self study: 0h

Description:
Delivery of final report to the collaborative session parentatge
Specific objectives:
14
Block 6. Integer Linear Programming Problems

Description:
Assimilation of the concepts of branching and quoting. Make iterations of the Branch and Bound algorithm with small problems.

Specific objectives:
8

Hours: 8h
- Theory classes: 2h
- Practical classes: 2h
- Laboratory classes: 0h
- Guided activities: 0h
- Self study: 4h

Attitude and motivation toward work. A3

Description:
Oral presentation of course work in a limited time (10min to the working group)

Specific objectives:
14

Hours: 7h
- Theory classes: 0h
- Practical classes: 0h
- Laboratory classes: 2h
- Guided activities: 0h
- Self study: 5h

Assessing motivation and attitude towards work. A3

Description:
Oral presentation

Specific objectives:
14

Hours: 0h
- Guided activities: 0h
- Self study: 0h

Block 7. Heuristic methods for integer linear programming problems. Metaheuristics

Description:
Understand the main principles of construction heuristic solutions. Learn to build algorithms based on metaheuristics described. Simulated annealing method, tabu search, greedy search.

Hours: 12h
- Theory classes: 4h
- Practical classes: 2h
- Laboratory classes: 0h
- Guided activities: 0h
- Self study: 6h
Evaluation of lab 2

Hours: 0h
Guided activities: 0h
Self study: 0h

Description:
Handed a questionnaire completed by the end of the session. This questionnaire will go.

Specific objectives:
2, 4, 8, 9, 10, 11

Laboratory 1 and 2

Hours: 10h
Theory classes: 0h
Practical classes: 0h
Laboratory classes: 4h
Guided activities: 2h
Self study: 4h

Description:
Reading the previous questionnaire and preparation of practice. Execution of the exercise and delivery of completed questionnaire.

Specific objectives:
3, 5, 6, 7, 8, 10

Block 8. Course work.

Hours: 16h
Theory classes: 2h
Practical classes: 0h
Laboratory classes: 6h
Guided activities: 0h
Self study: 8h

Description:
Assimilating the different stages of formulation, analysis and testing of an optimization model as part of a system to support decision making. Analysis of performance and computational tools used in the performance of the developed model. Development of skills associated to this subject.

Students will make up work groups (2 students)

Specific objectives:
1, 3, 4, 7, 9, 10, 11

Assessment Course work

Hours: 0h
Guided activities: 0h
Self study: 0h
Description
A model will be proposed to the students for its development along the course. Specific lab sessions will be used for monitoring this activity.

Specific objectives:
- Development of a model based on optimization problems as part of a system to aid decision making.
- Analyze the performance of the computational model developed for use in the environment of proper systems to aid decision making.

Specific objectives:
1, 3, 4

Part 2

<table>
<thead>
<tr>
<th>Hours</th>
<th>Guided activities</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h</td>
<td>2h</td>
<td>4h</td>
</tr>
</tbody>
</table>

Description:
It consists of test problems for blocks 5, 6 and 7 of the subject and the corresponding block 8 related blocks 5.6 and 7.

Specific objectives:
8, 9, 10, 11

Final Exam

<table>
<thead>
<tr>
<th>Hours</th>
<th>Guided activities</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>8h</td>
<td>2h</td>
<td>6h</td>
</tr>
</tbody>
</table>

Description:
It covers all blocks of the subject.

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Qualification system

NT = Note of Theory
NL = Note for Laboratory sessions. This note will consist of the marks obtained in the two lab exercises, each one of them weighting 50% of NL
NTC = Note for Laboratory Labour Course
NC = Note for skills

N = 0.45*NT + 0.2*NL + 0.25 * NTC + 0.1*NC

If 0.5* NExP1 + 0.5* NExP2 ≥ 5 then no need to submit the final exam

NT = Max (NExF, 0.5 * NExP1 + 0.5* NExP2)

NExF Note of the final exam,
NExP1, NExP2 Notes of partial exams 1 and 2.

Mark NC will depend on the degree reached at the skills assigned to the subject and the mark will be an average of the marks obtained at each of the skills. (There are two skills, C1, C2. Then mark NC will obtained as NC = 0.5*NC1 + 0.5*NC2

For a given skill i there is the following matching between the level obtained at that skill and the mark NC1, NC2 involved in the final mark

A level A is equivalent to a mark NC1 (or NC2) that will be between 8,5 and 10
A level B is equivalent to a mark NC1 (or NC2) that will be between 6.5 and <8,5
A level C is equivalent to a mark NC1 (or NC2) that will be between 5 and < 6.5
A level D is equivalent to a mark NC1 (or NC2) that will be between 0 and <5

Marks for skills are obtained through activities carried out in bloc 8 (Laboratory Labour Course) and Lab sessions.

Marks NC1, NC2 for skills assigned to this subject will obey to the following expression:

NCi = 0.25 * NTC + 0.10*NL + Specific Activities for the skill; i=1,2
Bibliography

Basic:

Complementary:

Others resources:

Hyperlink

http://www.hsor.org/

http://www.ampl.com/

http://people.brunel.ac.uk/~mastjjb/jeb/or/contents.html

http://ifsors.org/web/