270062 - MP - Multiprocessors

Coordinating unit: 270 - FIB - Barcelona School of Informatics
Teaching unit: 701 - AC - Department of Computer Architecture
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan

Teaching staff

Coordinator:
- Jose M. Llaberia Griñó (llaberia@ac.upc.edu)

Prior skills

The subjects listed in IC, EC, EP, AC, PAR, AC2

Requirements

- Prerequisite AC2
- Prerequisite PAR

Degree competences to which the subject contributes

Specific:

CEC2.1. To analyse, evaluate, select and configure hardware platforms for the development and execution of computer applications and services.
CEC3.2. To develop specific processors and embedded systems; to develop and optimize the software of these systems.
CT6.2. To demonstrate knowledge, comprehension and capacity to evaluate the structure and architecture of computers, and the basic components that compound them.
CT7.1. To demonstrate knowledge about metrics of quality and be able to use them.

Generical:

G7. AUTONOMOUS LEARNING: to detect deficiencies in the own knowledge and overcome them through critical reflection and choosing the best actuation to extend this knowledge. Capacity for learning new methods and technologies, and versatility to adapt oneself to new situations.

Teaching methodology

Classes theory in which concepts are developed and there is student participation.
Classes of problems which apply the concepts developed in the theory classes and is an active student.
Laboratory classes in which to apply the concepts developed in theory class a concrete example of multiprocessor. The active agent is pupils and collaboration between elements of the group is the means to increase and consolidate knowledge.
The course is developed constructively. In other words, is part of the concepts learned in previous courses in each subject and the subject of increased knowledge and ability to understand, analyze and reason about aspects of a multiprocessor. This training is more quantitative.

Learning objectives of the subject

1. Training to understand the basic concepts in multiprocessors: terminology, organization, elements of a Multiprocessor, consistency and coherence in memory.
270062 - MP - Multiprocessors

2. Training to understand the basic concepts of communication and synchronization in a multiprocessor.
3. Training to understand the constraints imposed by technology, through the operation of ideal solutions adopted and implemented a multiprocessor.
4. Capacity to analyze and critically evaluate a multiprocessor and its elements.
5. Training for the use of a hardware description language and its application in the specification of elements of a Multiprocessor

<table>
<thead>
<tr>
<th>Study load</th>
<th>Theory classes:</th>
<th>Practical classes:</th>
<th>Laboratory classes:</th>
<th>Guided activities:</th>
<th>Self study:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total learning time: 150h</td>
<td>30h</td>
<td>15h</td>
<td>15h</td>
<td>6h</td>
<td>84h</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.00%</td>
<td>10.00%</td>
<td>10.00%</td>
<td>4.00%</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Motivation

Degree competences to which the content contributes:

Description:
Obstacles exist to exploit the parallelism at the level of instruction. Increased productivity of a multithreaded processor using the technique. Use the available number of transistors on a chip using the technique of replication of processors.

Consistency and coherence of memory

Degree competences to which the content contributes:

Description:
Concepts of memory consistency and cache coherence. Memory model specified in the machine language. Need to maintain consistency among copies of data.

Multiprocessor core

Degree competences to which the content contributes:

Description:

Communication and synchronization

Degree competences to which the content contributes:

Description:
Support the machine language for communication and synchronization. Basic mechanisms of synchronization.

Small-scale multiprocessor

Degree competences to which the content contributes:

Description:

Scalable multiprocessor

Degree competences to which the content contributes:
Description:
Implications of the number of processors in a multiprocessor architecture. Interconnection of several chip multiprocessor.
Planning of activities

<table>
<thead>
<tr>
<th>Consolidation</th>
<th>Hours: 11h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Guided activities: 3h</td>
</tr>
<tr>
<td></td>
<td>Self study: 8h</td>
</tr>
</tbody>
</table>

Specific objectives:
1, 2, 3, 4, 5

<table>
<thead>
<tr>
<th>Test</th>
<th>Hours: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Guided activities: 2h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Specific objectives:
1, 4, 5

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Hours: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 1h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td></td>
<td>Self study: 6h</td>
</tr>
</tbody>
</table>

Specific objectives:
1, 4, 5

<table>
<thead>
<tr>
<th>Consistency and coherence of memory</th>
<th>Hours: 19h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td></td>
<td>Self study: 10h</td>
</tr>
</tbody>
</table>

Specific objectives:
1, 5
Multiprocessor core

Hours: 29h
Theory classes: 6h
Practical classes: 3h
Laboratory classes: 4h
Guided activities: 0h
Self study: 16h

Description:
To study the theoretical concepts of the subject and resolve financial problems and proposed.

Specific objectives:
1, 4, 5

Communication and synchronization

Hours: 19h
Theory classes: 4h
Practical classes: 2h
Laboratory classes: 3h
Guided activities: 0h
Self study: 10h

Description:
To study the theoretical concepts of the subject and resolve financial problems and proposed.

Specific objectives:
2, 5

Small-scale multiprocessor

Hours: 27h
Theory classes: 5h
Practical classes: 4h
Laboratory classes: 4h
Guided activities: 0h
Self study: 14h

Description:
To study the theoretical concepts of the subject and resolve financial problems and proposed.

Specific objectives:
3, 5

Scalable multiprocessor

Hours: 15h
Theory classes: 3h
Practical classes: 2h
Laboratory classes: 0h
Guided activities: 0h
Self study: 10h
270062 - MP - Multiprocessors

Description:
To study the theoretical concepts of the subject and resolve financial problems and proposed.

Specific objectives:
3, 4

<table>
<thead>
<tr>
<th>Consolidation</th>
<th>Hours: 6h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 6h</td>
</tr>
<tr>
<td></td>
<td>Self study: 0h</td>
</tr>
</tbody>
</table>

Description:
Consolidation of concepts developed during the course.

Specific objectives:
1, 2, 3, 4, 5

Qualification system
Proof (P): Written test which evaluated the goal for the first three issues.
Final exam (F): Written test which evaluated all the objectives of the course.
Laboratory (L) is evaluated based on reports submitted in each of the sessions and, if appropriate, a personal interview.

The final (NF) is calculated using the following expression:
NF = max (0.8 x F (0.65 x F + 0.15 P)) + 0.2 x L

The level of achievement of generic competition evaluated indirectly from the notes of evidence and the final exam.
The corresponding note is:
A if 8.5 =< NF; B if 7 =< NF < 8.5; C if 5 =< NF < 7; D if NF < 5

Bibliography

Basic: