Course guide
270107 - MD - Data Mining

Unit in charge: Barcelona School of Informatics
Teaching unit: 723 - CS - Department of Computer Science.
715 - EIO - Department of Statistics and Operations Research.

Degree: BACHELOR’S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010). (Optional subject).

Academic year: 2023 ECTS Credits: 6.0 Languages: English

LECTURER

Coordinating lecturer: - Karina Gibert Oliveras (karina.gibert@upc.edu)
- Mario Martín Muñoz (mmartin@cs.upc.edu)

Others: - Caroline König (caroline.leonore.konig@upc.edu)
- Dante Conti (dante.conti@upc.edu)
- Lavanya Mandadapu (lavanya.mandadapu@upc.edu)
- Manuel Gijon Agudo (manuel.gijon@upc.edu)
- Sergi Ramirez Mitjans (sergi.ramirez@upc.edu)
- Xavier Angerri Torredeflot (xavier.angerri@upc.edu)

PRIOR SKILLS

Foundations of probability and statistics. Basic Programming in R

REQUIREMENTS

- Prerequisite PE
- Prerequisite PRO2

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CS12.2. To conceive, deploy, organize and manage computer systems and services, in business or institutional contexts, to improve the business processes; to take responsibility and lead the start-up and the continuous improvement; to evaluate its economic and social impact.
CS12.3. To demonstrate knowledge and application capacity of extraction and knowledge management systems.
CS12.6. To demonstrate knowledge and capacity to apply decision support and business intelligence systems.

Generical:
G3. THIRD LANGUAGE: to know the English language in a correct oral and written level, and accordingly to the needs of the graduates in Informatics Engineering. Capacity to work in a multidisciplinary group and in a multi-language environment and to communicate, orally and in a written way, knowledge, procedures, results and ideas related to the technical informatics engineer profession.
G9. PROPER THINKING HABITS: capacity of critical, logical and mathematical reasoning. Capacity to solve problems in her study area. Abstraction capacity: capacity to create and use models that reflect real situations. Capacity to design and perform simple experiments and analyse and interpret its results. Analysis, synthesis and evaluation capacity.
TEACHING METHODOLOGY

The learning methodology will consist in the analysis of case studies concerning complex data sets from real problems. From these problems the body of necessary scientific knowledge will be introduced. The theoretical and practical lessons are interleaved such that programming and/or integration of data mining functions enhance the assimilation of the various concepts explained. The open programming environment R will be used in the laboratory.

The laboratory classes will be devoted to solving problems related to the knowledge provided in the theory classes and to the resolution by the students of a similar problem. This problem may include the resolution of very brief conceptual questions and will be delivered for its evaluation. Finally, the students must complete two full practical works, a statistical modeling problem and a modelling problem of the "scientific", "transaction" or "marketing" kind (only one of them must be chosen by the student). This last practical work will be presented orally to the whole class.

LEARNING OBJECTIVES OF THE SUBJECT

1. Knowing the types of the main problems of Data Mining
2. Data quality assessment and preprocessing
3. Problem solving: identify the statistical and/or machine learning techniques more appropriate to solve the problem
5. Implement simple learning algorithms
6. Validation of results
7. Presentation of results in a professional environment for decision making

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
<tr>
<td>Guided activities</td>
<td>6,0</td>
<td>4.00</td>
</tr>
<tr>
<td>Self study</td>
<td>84,0</td>
<td>56.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>30,0</td>
<td>20.00</td>
</tr>
</tbody>
</table>

Total learning time: 150 h

CONTENTS

Introduction to Data Mining.

Description:
Statistical modeling and types of problems: analysis of binary data ("transactions"), analysis of scientific data and analysis of data from enterprises

Visualization and dimensionality reduction

Description:
Feature selection and extraction. Visualization of multivariate data.

Clustering

Description:
Direct partitioning methods, hierarchical methods and expectation maximization
<table>
<thead>
<tr>
<th>Predictive Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Regressió lineal múltiple i generalitzada. Regressió Logística. Xarxes Neuronais</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Classification and regression trees (CART).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Validation protocols and data resampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Holdout, cross-validation and the bootstrap</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Generation of association rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>A-priori and Eclat algorithms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discriminant Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Bayesian decision theory. LDA and QDA Discriminant Analysis and Naïve Bayes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non parametric discrimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Nearest neighbours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regression Shrinkage and Variable Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Regularized linear regression. LASSO and the Elastic Net methods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formal concept analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>Formal method for pattern finding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preprocessing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>
Bagging i ensemble methods

Description:
Bagging i ensemble methods

ACTIVITIES

Development Unit 1

Specific objectives:
1

Full-or-part-time: 2h
Theory classes: 2h

A review of R language

Full-or-part-time: 6h
Laboratory classes: 6h

Development of item 2

Specific objectives:
2

Full-or-part-time: 16h
Theory classes: 4h
Laboratory classes: 4h
Self study: 8h

Development of item 3

Specific objectives:
2

Full-or-part-time: 9h
Theory classes: 3h
Laboratory classes: 2h
Self study: 4h

Development of Item 4

Specific objectives:
2

Full-or-part-time: 11h
Theory classes: 3h
Laboratory classes: 4h
Self study: 4h
Development of Item 5

Specific objectives:
2

Full-or-part-time: 9h
- Theory classes: 3h
- Laboratory classes: 2h
- Self study: 4h

Development of Item 6

Specific objectives:
2

Full-or-part-time: 7h
- Theory classes: 3h
- Self study: 4h

Development of Item 7

Specific objectives:
2

Full-or-part-time: 9h
- Theory classes: 3h
- Laboratory classes: 2h
- Self study: 4h

Development of Item 8

Specific objectives:
2

Full-or-part-time: 11h
- Theory classes: 3h
- Laboratory classes: 4h
- Self study: 4h

Development of Item 9

Specific objectives:
2

Full-or-part-time: 11h
- Theory classes: 3h
- Laboratory classes: 2h
- Self study: 6h
Development of Item 10

Specific objectives:
6

Related competencies:
G9. PROPER THINKING HABITS: capacity of critical, logical and mathematical reasoning. Capacity to solve problems in her study area. Abstraction capacity: capacity to create and use models that reflect real situations. Capacity to design and perform simple experiments and analyse and interpret its results. Analysis, synthesis and evaluation capacity.

Full-or-part-time: 13h
Theory classes: 3h
Laboratory classes: 4h
Self study: 6h

Practice 1

Specific objectives:
2, 3, 5, 6

Related competencies:
G9. PROPER THINKING HABITS: capacity of critical, logical and mathematical reasoning. Capacity to solve problems in her study area. Abstraction capacity: capacity to create and use models that reflect real situations. Capacity to design and perform simple experiments and analyse and interpret its results. Analysis, synthesis and evaluation capacity.

Full-or-part-time: 23h
Guided activities: 3h
Self study: 20h

Practice 2

Specific objectives:
3, 5, 6, 7

Related competencies:
G9. PROPER THINKING HABITS: capacity of critical, logical and mathematical reasoning. Capacity to solve problems in her study area. Abstraction capacity: capacity to create and use models that reflect real situations. Capacity to design and perform simple experiments and analyse and interpret its results. Analysis, synthesis and evaluation capacity.
G3. THIRD LANGUAGE: to know the English language in a correct oral and written level, and accordingly to the needs of the graduates in Informatics Engineering. Capacity to work in a multidisciplinary group and in a multi-language environment and to communicate, orally and in a written way, knowledge, procedures, results and ideas related to the technical informatics engineer profession.

Full-or-part-time: 23h
Guided activities: 3h
Self study: 20h
GRADING SYSTEM

The evaluation of the course will be based on the grade obtained in the exercises developed during the lab sessions. On the other hand there will be two practical works. For each practical work, the student will deliver the corresponding written report. Finally, at the end of the course, the students must present orally the second practical work.

The student will be required to show the necessary reasoning as well as English skills. These skills will be evaluated using the corresponding rubrics.

The overall laboratory grade is the average of the grades obtained for the exercises developed out of the laboratory sessions.

The final mark will be obtained as follows:

\[
\text{Final grade} = 0.2 \times \text{Lab} + 0.4 \times \text{Pr1} + 0.4 \times \text{Pr2}
\]

In both practical works (counting 40% each), 35% corresponds to the technical correction and 5% corresponds to the 'reasoning' generic competence, so that this competence gets an overall weight of 10% of the final grade.

BIBLIOGRAPHY

Basic:

Complementary:

RESOURCES

Hyperlink: