

270133 - CDI - Data and Image Compression

Coordinating unit: 270 - FIB - Barcelona School of Informatics
Teaching unit: 749 - MAT - Department of Mathematics
Academic year: 2018
Degree: BACHELOR'S DEGREE IN INFORMATICS ENGINEERING (Syllabus 2010). (Teaching unit Optional)
ECTS credits: 6
Teaching languages: Catalan, Spanish, English

Teaching staff

Coordinator: - Fernando Martínez Sáez (fernando.martinez@upc.edu)
Others: - Jordi Quer Bosor (jordi.quer@upc.edu)

Prior skills

Basic mathematical language.

Degree competences to which the subject contributes

Specific:

CCO1.1. To evaluate the computational complexity of a problem, know the algorithmic strategies which can solve it and recommend, develop and implement the solution which guarantees the best performance according to the established requirements.
CCO1.2. To demonstrate knowledge about the theoretical fundamentals of programming languages and the associated lexical, syntactical and semantic processing techniques and be able to apply them to create, design and process languages.
CT1.2A. To interpret, select and value concepts, theories, uses and technological developments related to computer science and its application derived from the needed fundamentals of mathematics, statistics and physics. Capacity to solve the mathematical problems presented in engineering. Talent to apply the knowledge about: algebra, differential and integral calculus and numeric methods; statistics and optimization.
CT1.2C. To use properly theories, procedures and tools in the professional development of the informatics engineering in all its fields (specification, design, implementation, deployment and products evaluation) demonstrating the comprehension of the adopted compromises in the design decisions.
CT4.1. To identify the most adequate algorithmic solutions to solve medium difficulty problems.
CT4.2. To reason about the correction and efficiency of an algorithmic solution.
CT5.2. To know, design and use efficiently the most adequate data types and data structures to solve a problem.
CT5.3. To design, write, test, refine, document and maintain code in an high level programming language to solve programming problems applying algorithmic schemas and using data structures.
CT5.4. To design the programs architecture using techniques of object orientation, modularization and specification and implementation of abstract data types.
CT5.5. To use the tools of a software development environment to create and develop applications.

General:

G3. THIRD LANGUAGE: to know the English language in a correct oral and written level, and accordingly to the needs of the graduates in Informatics Engineering. Capacity to work in a multidisciplinary group and in a multi-language environment and to communicate, orally and in a written way, knowledge, procedures, results and ideas related to the technical informatics engineer profession.
G4. EFFECTIVE ORAL AND WRITTEN communication: To communicate with other people knowledge, procedures, results and ideas orally and in a written way. To participate in discussions about topics related to the activity of a
270133 - CDI - Data and Image Compression

1. To understand what is lossless compression, the circumstances in which it is applicable, and the most important methods to achieve it.
2. To know the basic principles of information theory and the ways they are applied in relation to compression.
3. To become familiar with the concepts of lossy compression, the way the degree of compression and its fidelity are measured, and the most important methods used in practice.

Teaching methodology

It is true that there is always a time when you take the chalk and make clarifications on the board. This, however, is not the usual way of teaching. As a rule, the basic ideas are taught by projecting slides, which will be available to students in advance as pdf files.

Learning objectives of the subject

1. To understand what is lossless compression, the circumstances in which it is applicable, and the most important methods to achieve it.
2. To know the basic principles of information theory and the ways they are applied in relation to compression.
3. To become familiar with the concepts of lossy compression, the way the degree of compression and its fidelity are measured, and the most important methods used in practice.

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 12h</th>
<th>8.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hours medium group: 12h</td>
<td>8.00%</td>
</tr>
<tr>
<td></td>
<td>Hours small group: 36h</td>
<td>24.00%</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 6h</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Self study: 84h</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Content

1. Information theory

Degree competences to which the content contributes:

Description:
Introduction to Shannon information theory. Sources of information, communication systems, uncertainty and entropy, limits of compression.

2. Lossless coding

Degree competences to which the content contributes:

Description:

3. Lossy compression

Degree competences to which the content contributes:

Description:
Planning of activities

| Development of the information theory block in theoretical lectures, laboratory sessions and problem solving sessions. | Hours: 41h
Theory classes: 8h
Practical classes: 4h
Laboratory classes: 12h
Guided activities: 2h
Self study: 15h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific objectives: 2</td>
<td></td>
</tr>
</tbody>
</table>

| Development of the lossless compression block in theory classes, laboratory sessions and problem solving sessions. | Hours: 41h
Theory classes: 8h
Practical classes: 4h
Laboratory classes: 12h
Guided activities: 2h
Self study: 15h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific objectives: 1</td>
<td></td>
</tr>
</tbody>
</table>

| Development of the lossy compression block in lectures, laboratory sessions and problem solving sessions. | Hours: 41h
Theory classes: 8h
Practical classes: 4h
Laboratory classes: 12h
Guided activities: 2h
Self study: 15h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific objectives: 3</td>
<td></td>
</tr>
</tbody>
</table>

| Final exam | Hours: 27h
Guided activities: 3h
Self study: 24h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific objectives: 2</td>
<td></td>
</tr>
</tbody>
</table>

Qualification system

30 % Exam lossless compression.
30 % Exam lossy compression.
40 % Lab and problems.
Bibliography

Basic:

Complementary:

