Course guides
270207 - COM - Computers

Unit in charge: Barcelona School of Informatics
Teaching unit: 701 - DAC - Department of Computer Architecture.

Degree: BACHELOR'S DEGREE IN DATA SCIENCE AND ENGINEERING (Syllabus 2017). (Compulsory subject).

Academic year: 2021 ECTS Credits: 7.5 Languages: Catalan

LECTURER

Coordinating lecturer: JAVIER VERDU MULA

Others: Segon quadrimestre:
XAVIER MARTORELL BOFILL - 11
MANUEL ALEJANDRO PAJUELO GONZALEZ - 11
JAVIER VERDU MULA - 11

PRIOR SKILLS

Basic programming

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.

Generical:
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG4. Identify opportunities for innovative data-driven applications in evolving technological environments.

Transversal:
CT5. Solvent use of information resources. Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty and critically evaluate the results of such management.
CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT7. Third language. Know a third language, preferably English, with an adequate oral and written level and in line with the needs of graduates.

Basic:
CB1. That students have demonstrated to possess and understand knowledge in an area of study that starts from the base of general secondary education, and is usually found at a level that, although supported by advanced textbooks, also includes some aspects that imply Knowledge from the vanguard of their field of study.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy.
TEACHING METHODOLOGY

The course is based on classroom theory and laboratory. The lectures follow the program set out in this syllabus, are usually based on material provided through slides.

On the lectures, the course promotes a dialogue between teacher and students by providing activities carried out jointly based on particular aspects of the current topic.

Laboratory classes follow the same subjects and are based on documentation provided, explaining how to develop the current practice.

LEARNING OBJECTIVES OF THE SUBJECT

1. Know about the objectives of the course
2. Work with different types of data, natural, integer, floating point, and their grouping
3. Demonstrate knowledge and understanding of the fundamentals of computers and on the basic structure of a computer.
4. Describe and work with the program execution environment.
5. Knowledge on the structure of programs, and be able to work with their analysis and management tools.
6. Know about the basic principles of the programming languages.
7. Knowledge and work with the operating system services
8. Knowledge and work with libraries
9. Know and work with the program compilation tools
10. Know and work with parallel programming models
11. Know and work with basic techniques of performance analysis
12. Know and work with the input/output tools provided by the execution environments
13. Know and work with the storage systems

STUDY LOAD

<table>
<thead>
<tr>
<th>Type</th>
<th>Hours</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours large group</td>
<td>45,0</td>
<td>24.00</td>
</tr>
<tr>
<td>Self study</td>
<td>112,5</td>
<td>60.00</td>
</tr>
<tr>
<td>Hours small group</td>
<td>30,0</td>
<td>16.00</td>
</tr>
</tbody>
</table>

Total learning time: 187.5 h

CONTENTS

Data representation

Description:
Know and work with the different data types and their representation in computers. Binary encoding, characters, integers, strings, floating point values, and their grouping in classes, structures, and unions.

Computer elements

Description:
Description of the elements that constitute a computer: processors, memory hierarchy, input/output components, data storage and the way they are interconnected.
<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System libraries</td>
<td>This chapter presents the functionalities offered by the system libraries.</td>
</tr>
<tr>
<td></td>
<td>Shows the format of executable files, and how and which information can be obtained from them.</td>
</tr>
<tr>
<td>Compilation environment</td>
<td>It presents the tools performing compilation and interpretation of programming languages. It describes the compilation and optimization options offered by compilers. It completes the structure of the executable files, with symbol table, and debugging information.</td>
</tr>
<tr>
<td>Operating System</td>
<td>Describes the objectives of the Operating System in an execution environment. This chapter presents the basic OS abstractions and its interface. System calls, interrupts, exceptions.</td>
</tr>
<tr>
<td>Programming foundations</td>
<td>Description of the basic environment on top of which programs can be executed. Definition of operating system, execution levels, user and system (privileged), concepts of program and process. Program and libraries structure. Basic principles of programming languages, interpretation and compilation. Assembly language. Translation from high level languages to low level languages.</td>
</tr>
<tr>
<td>Introduction to parallelism</td>
<td>Parallelism and concurrency. Processes and threads. Synchronization. Programming models</td>
</tr>
<tr>
<td>Basic techniques of performance analysis</td>
<td>Performance of applications, metrics, sources of the information, performance counters, high resolution timers. Performance analysis, Gflops, bandwidth.</td>
</tr>
<tr>
<td>Input/output subsystem</td>
<td>It introduces the input/output subsystem of the execution environment, channels, terminals, files, pipes.</td>
</tr>
<tr>
<td>Storage systems</td>
<td>It describes the physical components of the Input/Output system to store data: disks, and filesystems. It provides a view of the fault tolerance mechanisms, based on redundant disks systems and logical volumes.</td>
</tr>
</tbody>
</table>
ACTIVITIES

Course presentation

Specific objectives:
1

Related competencies:
CB1. That students have demonstrated to possess and understand knowledge in an area of study that starts from the base of general secondary education, and is usually found at a level that, although supported by advanced textbooks, also includes some aspects that imply Knowledge from the vanguard of their field of study.

Full-or-part-time: 7h
Theory classes: 1h
Laboratory classes: 4h
Self study: 2h

Fundamentals of programming

Specific objectives:
4, 5, 6

Related competencies:
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CT7. Third language. Know a third language, preferably English, with an adequate oral and written level and in line with the needs of graduates.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT5. Solvent use of information resources. Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty and critically evaluate the results of such management.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.

Full-or-part-time: 15h
Theory classes: 1h
Laboratory classes: 2h
Self study: 12h
Data representation

Specific objectives:
2

Related competencies:
- CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
- CB1. That students have demonstrated to possess and understand knowledge in an area of study that starts from the base of general secondary education, and is usually found at a level that, although supported by advanced textbooks, also includes some aspects that imply Knowledge from the vanguard of their field of study.

Full-or-part-time: 13h
- Theory classes: 5h
- Laboratory classes: 2h
- Self study: 6h

The computer and its elements

Specific objectives:
3

Related competencies:
- CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
- CB1. That students have demonstrated to possess and understand knowledge in an area of study that starts from the base of general secondary education, and is usually found at a level that, although supported by advanced textbooks, also includes some aspects that imply Knowledge from the vanguard of their field of study.

Full-or-part-time: 18h
- Theory classes: 6h
- Laboratory classes: 2h
- Self study: 10h

Libraries and compilation

Specific objectives:
8, 9

Related competencies:
- CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
- CT6. Autonomous Learning. Detect deficiencies in one’s own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
- CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy.

Full-or-part-time: 16h
- Theory classes: 4h
- Laboratory classes: 4h
- Self study: 8h
Operating System

Specific objectives:
7

Related competencies :
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy

Full-or-part-time: 18h 30m
Theory classes: 8h
Laboratory classes: 2h
Self study: 8h 30m

Partial control

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9

Related competencies :
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CT7. Third language. Know a third language, preferably English, with an adequate oral and written level and in line with the needs of graduates.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT5. Solvent use of information resources. Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty and critically evaluate the results of such management.
CB1. That students have demonstrated to possess and understand knowledge in an area of study that starts from the base of general secondary education, and is usually found at a level that, although supported by advanced textbooks, also includes some aspects that imply Knowledge from the vanguard of their field of study.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.

Full-or-part-time: 13h
Guided activities: 3h
Self study: 10h
Input/output and communications

Specific objectives:
12

Related competencies:
CG4. Identify opportunities for innovative data-driven applications in evolving technological environments.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CT5. Solvent use of information resources. Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty and critically evaluate the results of such management.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy

Full-or-part-time: 15h
Theory classes: 4h
Laboratory classes: 1h
Self study: 10h

File systems

Specific objectives:
13

Related competencies:
CG4. Identify opportunities for innovative data-driven applications in evolving technological environments.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy

Full-or-part-time: 15h
Theory classes: 4h
Laboratory classes: 1h
Self study: 10h
Parallelism

Specific objectives:
10

Related competencies:
CG4. Identify opportunities for innovative data-driven applications in evolving technological environments.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CT7. Third language. Know a third language, preferably English, with an adequate oral and written level and in line with the needs of graduates.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 18h
Theory classes: 6h
Laboratory classes: 2h
Self study: 10h

Performance analysis

Specific objectives:
11

Related competencies:
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CT5. Solvent use of information resources. Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty and critically evaluate the results of such management.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 14h
Theory classes: 4h
Laboratory classes: 2h
Self study: 8h
Laboratory test

Description:
Laboratory test of the course, consisting of a laboratory session, with a specific wording, done in an individual way. It is performed during a particular lab session.

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Related competencies:
CG4. Identify opportunities for innovative data-driven applications in evolving technological environments.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CT7. Third language. Know a third language, preferably English, with an adequate oral and written level and in line with the needs of graduates.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT5. Solvent use of information resources. Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty and critically evaluate the results of such management.
CB1. That students have demonstrated to possess and understand knowledge in an area of study that starts from the base of general secondary education, and is usually found at a level that, although supported by advanced textbooks, also includes some aspects that imply knowledge from the vanguard of their field of study.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of study.

Full-or-part-time: 12h
Guided activities: 2h
Self study: 10h
Final exam

Description:
Final exam of the course, consisting of theoretical questions related to all subjects explained in both theoretical classes and laboratory sessions.

Specific objectives:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Related competencies:
CG4. Identify opportunities for innovative data-driven applications in evolving technological environments.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.
CT7. Third language. Know a third language, preferably English, with an adequate oral and written level and in line with the needs of graduates.
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.
CT5. Solvent use of information resources. Manage the acquisition, structuring, analysis and visualization of data and information in the field of specialty and critically evaluate the results of such management.
CB1. That students have demonstrated to possess and understand knowledge in an area of ??study that starts from the base of general secondary education, and is usually found at a level that, although supported by advanced textbooks, also includes some aspects that imply knowledge from the vanguard of their field of study.
CB5. That the students have developed those learning skills necessary to undertake later studies with a high degree of autonomy.
CB2. That the students know how to apply their knowledge to their work or vocation in a professional way and possess the skills that are usually demonstrated through the elaboration and defense of arguments and problem solving within their area of ??study.

Full-or-part-time: 13h
Guided activities: 3h
Self study: 10h

GRADING SYSTEM

There are two exams for the theory part:
- PT: The partial theory control (30%)
- FT: The final theory exam (40%)

Regular Assessment: The final mark of the course comes from
- MAX(70%FT; 30%PT+40%FT)
- The lab test (20%)
- We also assess the lab deliveries (10%) that are related to the competences Solvent Usage of Information Resources and Autonomous Learning, respectively.

Reassessment: Only the students that fail the course (that is, students that have performed the partial and/or final theory exam) can go to the Reassessment exam (only theory exam). Thus, the Reassessment mark substitutes the global theory mark (that is, 70% of the course mark). Anyhow, if the regular assessment mark was 4 or higher and the new mark (including the Reassessment mark) is lower, then we keep the regular mark.
BIBLIOGRAPHY

Basic:

RESOURCES

Hyperlink:
- http://docencia.ac.upc.edu/FIB/GCED/COM