270215 - AD - Data Analysis

Coordinating unit: 270 - FIB - Barcelona School of Informatics
Teaching unit: 715 - EIO - Department of Statistics and Operations Research
Academic year: 2018
Degree: BACHELOR'S DEGREE IN DATA SCIENCE AND ENGINEERING (Syllabus 2017). (Teaching unit Compulsory)
ECTS credits: 6
Teaching languages: Catalan

Prior skills
Knowledge of basic statistical concepts, descriptive statistics, hypothesis testing. Familiarity with the statistical software R.

Degree competences to which the subject contributes

Specific:
CE1. Skillfully use mathematical concepts and methods that underlie the problems of science and data engineering.

CE2. To be able to program solutions to engineering problems: Design efficient algorithmic solutions to a given computational problem, implement them in the form of a robust, structured and maintainable program, and check the validity of the solution.

CE3. Analyze complex phenomena through probability and statistics, and propose models of these types in specific situations. Formulate and solve mathematical optimization problems.

CE4. Use current computer systems, including high performance systems, for the process of large volumes of data from the knowledge of its structure, operation and particularities.

CE8. Ability to choose and employ techniques of statistical modeling and data analysis, evaluating the quality of the models, validating and interpreting them.

Generic:
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.

CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.

CG3. Work in multidisciplinary teams and projects related to the processing and exploitation of complex data, interacting fluently with engineers and professionals from other disciplines.

CG4. Identify opportunities for innovative data-driven applications in evolving technological environments.

Transversal:
CT7. Third language. Know a third language, preferably English, with an adequate oral and written level and in line with the needs of graduates.

Teaching methodology
The learning process is a combination of theoretical explanation and practical application. The theory classes are used to explain the basic scientific contents of the course, whereas the laboratory sessions work on their application to solve real-life problems.

Practicals and project form the basis for working out the transversal competences of the students, related to team-work and public presentation of results. Practicals and project also serve to integrate the different pieces of knowledge of the course.

For hands-on computer training we use the R statistical environment.
270215 - AD - Data Analysis

Learning objectives of the subject

1. Exploratory Data Analysis
2. Discriminant Analysis with probabilistic hypothesis
3. Multivariate modeling
4. Time series

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Hours large group: 60h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guided activities:</td>
<td>6h</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>84h</td>
</tr>
</tbody>
</table>
Content

Data preprocessing

Degree competences to which the content contributes:

Description:
Outliers, missing data and transformations

Principal component analysis

Degree competences to which the content contributes:

Description:
Multivariate description of a table of continuous variables. Regression with principal components.

Factor analysis

Degree competences to which the content contributes:

Description:
The singular value decomposition, biplots, factor analysis

Multidimensional scaling (MDS)

Degree competences to which the content contributes:

Description:
Distance measures. Metric multidimensional scaling. Algorithms.

Cluster analysis

Degree competences to which the content contributes:

Description:

Correspondence analysis

Degree competences to which the content contributes:

Description:
Discriminant analysis

Degree competences to which the content contributes:

Description:
Multivariate normal distribution. Fisher's linear discriminant analysis.

Univariate time series models

Degree competences to which the content contributes:

Description:
Exponential smoothing, ARIMA models

Intervention analysis

Degree competences to which the content contributes:

Description:
Outliers, seasonal effects, intervention analysis.
Planning of activities

<table>
<thead>
<tr>
<th>Data preprocessing</th>
<th>Hours: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td></td>
<td>Self study: 4h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Principal component analysis</th>
<th>Hours: 14h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td></td>
<td>Self study: 6h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor analysis</th>
<th>Hours: 9h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 3h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td></td>
<td>Self study: 4h</td>
</tr>
<tr>
<td>Specific objectives:</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multidimensional scaling</th>
<th>Hours: 8h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td></td>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td></td>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td></td>
<td>Self study: 4h</td>
</tr>
</tbody>
</table>
Description:
Analysis of distance matrices with this method

Specific objectives:
1

Clustering

<table>
<thead>
<tr>
<th>Hours: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study: 4h</td>
</tr>
</tbody>
</table>

Description:
Application of the method to quantitative data matrices.

Specific objectives:
2

Correspondence Analysis

<table>
<thead>
<tr>
<th>Hours: 8h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 2h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 2h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study: 4h</td>
</tr>
</tbody>
</table>

Description:
Application of the method with cross tables.

Specific objectives:
2

Discriminant Analysis

<table>
<thead>
<tr>
<th>Hours: 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory classes: 4h</td>
</tr>
<tr>
<td>Practical classes: 0h</td>
</tr>
<tr>
<td>Laboratory classes: 4h</td>
</tr>
<tr>
<td>Guided activities: 0h</td>
</tr>
<tr>
<td>Self study: 4h</td>
</tr>
</tbody>
</table>

Description:
Application of the method to empirical data sets

Specific objectives:
2
Univariate time series models

Description:
Fitting time series models to data sets on the computer

Specific objectives:
1, 2, 3, 4

Hours: 14h
- Theory classes: 4h
- Practical classes: 0h
- Laboratory classes: 4h
- Guided activities: 0h
- Self study: 6h

Intervention analysis

Description:
Application of intervention analysis to real data sets

Specific objectives:
1, 2, 3, 4

Hours: 9h
- Theory classes: 2h
- Practical classes: 0h
- Laboratory classes: 3h
- Guided activities: 0h
- Self study: 4h

Practical on exploratory data analysis

Description:
Student do an exploratory analysis of a data set and hand in a questionnaire about it.

Specific objectives:
1, 2, 3, 4

Hours: 18h
- Guided activities: 3h
- Self study: 15h

Project

Description:
Students realize, in couples, a complete multivariate study of a certain dataset using the techniques they studied during the course, and hand in a written report about it.

Specific objectives:
1, 2, 3, 4

Hours: 16h
- Guided activities: 3h
- Self study: 13h
Exam concerning basic concepts

<table>
<thead>
<tr>
<th>Hours: 16h 30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided activities: 2h</td>
</tr>
<tr>
<td>Self study: 14h 30m</td>
</tr>
</tbody>
</table>

Description:
There are two exams related to the theoretical concepts of the course.

Specific objectives:
1, 2, 3, 4

Qualification system

The student’s final grade for the course is based on grades obtained for weekly homework assignments (25%), a partial exam halfway through the course (25%), a final exam covering the second half of the course (25%) and a project (25%).

Each weekly assignment consists of resolving a questionnaire. These assignments aim at consolidating knowledge of the techniques exposed in the theoretical sessions. The assignments require the analysis of datasets in the statistical environment R.

A project is carried out by a group of two students, and students have to show they can resolve problems with the techniques they have learned during the course. Each group hands in a written report about their project at the end of the course.

The two exams will be programmed according to the calendar of the faculty, and assess if students have assimilated the basic concepts of the material of the course.

The re-evaluation of the course consists of a resit exam that covers all theory of the course (the subjects of both the first and the second exam) and represents 50% of the final course grade.
270215 - AD - Data Analysis

Bibliography

Basic:

Complementary:

