Degree competences to which the subject contributes

Specific:
CE5. Design and apply techniques of signal processing, choosing between different technological tools, including those of Artificial vision, speech recognition and multimedia data processing.

General:
CG1. To design computer systems that integrate data of provenances and very diverse forms, create with them mathematical models, reason on these models and act accordingly, learning from experience.
CG2. Choose and apply the most appropriate methods and techniques to a problem defined by data that represents a challenge for its volume, speed, variety or heterogeneity, including computer, mathematical, statistical and signal processing methods.
CG5. To be able to draw on fundamental knowledge and sound work methodologies acquired during the studies to adapt to the new technological scenarios of the future.

Transversal:
CT6. Autonomous Learning. Detect deficiencies in one's own knowledge and overcome them through critical reflection and the choice of the best action to extend this knowledge.

Teaching methodology
The subject is based on classroom theory classes, problems and laboratory. The theory classes follow the program defined in this teaching guide. Within the lectures, the dialogue between professors and students is promoted by proposing exercises and activities to be carried out jointly based on particular aspects of the topic being dealt with. The laboratory classes exemplify the contents developed in the theory classes.

Learning objectives of the subject
1. Know how to characterize stochastic processes
2. Understand and know how to use the most common signal transforms and their application
3. To obtain basic optimal and adaptive filtering background for audiovisual data applications

Study load

<table>
<thead>
<tr>
<th>Total learning time: 150h</th>
<th>Theory classes:</th>
<th>60h</th>
<th>40.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Guided activities:</td>
<td>6h</td>
<td>4.00%</td>
</tr>
<tr>
<td></td>
<td>Self study:</td>
<td>84h</td>
<td>56.00%</td>
</tr>
</tbody>
</table>
Content

Statistical Signal modelling

Degree competences to which the content contributes:

Transforms

Degree competences to which the content contributes:

Optimal filter and adaptive filter

Degree competences to which the content contributes:
Planning of activities

<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
<th>Specific objectives</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Theory, exercise and laboratory classes corresponding to Unit 1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
| | Theory classes: 10h 18m
Practical classes: 3h 42m
Laboratory classes: 2h 18m
Guided activities: 2h 18m
Self study: 23h 36m | |
| 2 | Theory, exercise and laboratory classes corresponding to Unit 2 | 2 |
| | Theory classes: 15h 24m
Practical classes: 5h 36m
Laboratory classes: 3h 24m
Guided activities: 3h 42m
Self study: 35h 24m | |
| 3 | Theory, exercise and laboratory classes corresponding to Unit 3 | 3 |
| | Theory classes: 10h 18m
Practical classes: 3h 42m
Laboratory classes: 2h 18m
Guided activities: 2h 18m
Self study: 23h 36m | |
The final mark is obtained from the partial marks:

- Mid-term exam: M (25%)
- Final exam: F (60%)
- Laboratory assignments: L (15%)

Mark = \text{max} (0.6F+0.25M+0.15L ; 0.85F+0.15L)

In the case of a re-evaluation exam (R), the final mark is

Mark = 0.85R+0.15L

Bibliography

Basic:

Complementary:
